A refined Lusin type theorem for gradients

IF 1.6 2区 数学 Q1 MATHEMATICS
Luigi De Masi, Andrea Marchese
{"title":"A refined Lusin type theorem for gradients","authors":"Luigi De Masi,&nbsp;Andrea Marchese","doi":"10.1016/j.jfa.2025.111152","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a refined version of the celebrated Lusin type theorem for gradients by Alberti, stating that any Borel vector field <em>f</em> coincides with the gradient of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> function <em>g</em>, outside a set <em>E</em> of arbitrarily small Lebesgue measure. We replace the Lebesgue measure with any Radon measure <em>μ</em>, and we obtain that the estimate on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm of <em>Dg</em> does not depend on <span><math><mi>μ</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span>, if the value of <em>f</em> is <em>μ</em>-a.e. orthogonal to the decomposability bundle of <em>μ</em>. We observe that our result implies the 1-dimensional version of the flat chain conjecture by Ambrosio and Kirchheim on the equivalence between metric currents and flat chains with finite mass in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and we state a suitable generalization for <em>k</em>-forms, which would imply the validity of the conjecture in full generality.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111152"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003349","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a refined version of the celebrated Lusin type theorem for gradients by Alberti, stating that any Borel vector field f coincides with the gradient of a C1 function g, outside a set E of arbitrarily small Lebesgue measure. We replace the Lebesgue measure with any Radon measure μ, and we obtain that the estimate on the Lp norm of Dg does not depend on μ(E), if the value of f is μ-a.e. orthogonal to the decomposability bundle of μ. We observe that our result implies the 1-dimensional version of the flat chain conjecture by Ambrosio and Kirchheim on the equivalence between metric currents and flat chains with finite mass in Rn and we state a suitable generalization for k-forms, which would imply the validity of the conjecture in full generality.
梯度的一个改进的Lusin型定理
我们证明了Alberti关于梯度的著名的Lusin类型定理的一个改进版本,说明任何Borel向量场f与任意小Lebesgue测度的集合E外的C1函数g的梯度重合。我们用任意Radon测度μ代替Lebesgue测度,得到Dg在Lp范数上的估计不依赖于μ(E),如果f的值为μ-a.e。正交于μ的可分解束。我们观察到,我们的结果暗示了Ambrosio和Kirchheim关于度量流与有限质量的平面链在Rn中的等价性的平链猜想的一维版本,并且我们陈述了k形式的适当推广,这将暗示猜想在完全一般情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信