A noncommutative integral on spectrally truncated spectral triples, and a link with quantum ergodicity

IF 1.6 2区 数学 Q1 MATHEMATICS
Eva-Maria Hekkelman, Edward A. McDonald
{"title":"A noncommutative integral on spectrally truncated spectral triples, and a link with quantum ergodicity","authors":"Eva-Maria Hekkelman,&nbsp;Edward A. McDonald","doi":"10.1016/j.jfa.2025.111154","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a simple approximation of the noncommutative integral in noncommutative geometry for the Connes–Van Suijlekom paradigm of spectrally truncated spectral triples. A close connection between this approximation and the field of quantum ergodicity and work by Widom in particular immediately provides a Szegő limit formula for noncommutative geometry. We then make a connection to the density of states. Finally, we propose a definition for the ergodicity of geodesic flow for compact spectral triples. This definition is known in quantum ergodicity as uniqueness of the vacuum state for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-dynamical systems, and for spectral triples where local Weyl laws hold this implies that the Dirac operator of the spectral triple is quantum ergodic. This brings to light a close connection between quantum ergodicity and Connes' integral formula.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111154"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003362","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a simple approximation of the noncommutative integral in noncommutative geometry for the Connes–Van Suijlekom paradigm of spectrally truncated spectral triples. A close connection between this approximation and the field of quantum ergodicity and work by Widom in particular immediately provides a Szegő limit formula for noncommutative geometry. We then make a connection to the density of states. Finally, we propose a definition for the ergodicity of geodesic flow for compact spectral triples. This definition is known in quantum ergodicity as uniqueness of the vacuum state for C-dynamical systems, and for spectral triples where local Weyl laws hold this implies that the Dirac operator of the spectral triple is quantum ergodic. This brings to light a close connection between quantum ergodicity and Connes' integral formula.
谱截断谱三元组上的非交换积分,以及具有量子遍历性的链路
我们提出了非交换几何中频谱截断谱三元组的Connes-Van Suijlekom范式的非交换积分的一个简单逼近。这种近似与量子遍历性领域的密切联系,特别是与Widom的功之间的密切联系,立即提供了非交换几何的塞格格极限公式。然后我们把态的密度联系起来。最后,给出了紧谱三元组测地线流遍历性的定义。这个定义在量子遍历性中被称为C -动力系统真空态的唯一性,对于具有局部Weyl定律的谱三元组,这意味着谱三元组的Dirac算子是量子遍历的。这揭示了量子遍历性与科恩斯积分公式之间的密切联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信