Uniform stability of equilibria in the inviscid limit for the Navier-Stokes-Korteweg system

IF 1.6 2区 数学 Q1 MATHEMATICS
Xueke Pu , Xiuli Xu , Jingjun Zhang
{"title":"Uniform stability of equilibria in the inviscid limit for the Navier-Stokes-Korteweg system","authors":"Xueke Pu ,&nbsp;Xiuli Xu ,&nbsp;Jingjun Zhang","doi":"10.1016/j.jfa.2025.111156","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers a stability result for the three-dimensional Navier-Stokes-Korteweg system uniformly in the inviscid limit. We obtain a unique global smooth solution close to the constant equilibria <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mrow><mn>0</mn><mo>)</mo></mrow></math></span>, independent of the viscosity parameter <em>ε</em>, assuming that the potential part of the initial velocity is small independently of the viscosity parameter <em>ε</em> while the incompressible part of the initial velocity is small compared to <em>ε</em>. The proof is based on the parabolic energy estimates and dispersive properties involving the method of space time resonances.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111156"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003386","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a stability result for the three-dimensional Navier-Stokes-Korteweg system uniformly in the inviscid limit. We obtain a unique global smooth solution close to the constant equilibria (1,0), independent of the viscosity parameter ε, assuming that the potential part of the initial velocity is small independently of the viscosity parameter ε while the incompressible part of the initial velocity is small compared to ε. The proof is based on the parabolic energy estimates and dispersive properties involving the method of space time resonances.
Navier-Stokes-Korteweg系统无粘极限平衡点的一致稳定性
本文研究了三维Navier-Stokes-Korteweg系统在无粘极限下的一致稳定性结果。假设初速度的势部较小,与粘度参数ε无关,而初速度的不可压缩部分相对于ε较小,我们得到了一个唯一的全局光滑解,接近于常数平衡点(1,0),与粘度参数ε无关。该证明是基于抛物线能量估计和涉及时空共振方法的色散性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信