Carleman estimates for higher step Grushin operators

IF 1.6 2区 数学 Q1 MATHEMATICS
Hendrik De Bie , Pan Lian
{"title":"Carleman estimates for higher step Grushin operators","authors":"Hendrik De Bie ,&nbsp;Pan Lian","doi":"10.1016/j.jfa.2025.111150","DOIUrl":null,"url":null,"abstract":"<div><div>The higher step Grushin operators <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> are a family of sub-elliptic operators which degenerate on a sub-manifold of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msup></math></span>. This paper establishes Carleman-type inequalities for these operators. It is achieved by deriving a weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> estimate for the Grushin-harmonic projector. The crucial ingredient in the proof is the addition formula for Gegenbauer polynomials due to T. Koornwinder and Y. Xu. As a consequence, we obtain the strong unique continuation property for the Schrödinger operators <span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>+</mo><mi>V</mi></math></span> at points of the degeneracy manifold, where <em>V</em> belongs to certain <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msup><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111150"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003325","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The higher step Grushin operators Δα are a family of sub-elliptic operators which degenerate on a sub-manifold of Rn+m. This paper establishes Carleman-type inequalities for these operators. It is achieved by deriving a weighted LpLq estimate for the Grushin-harmonic projector. The crucial ingredient in the proof is the addition formula for Gegenbauer polynomials due to T. Koornwinder and Y. Xu. As a consequence, we obtain the strong unique continuation property for the Schrödinger operators Δα+V at points of the degeneracy manifold, where V belongs to certain Llocr(Rn+m).
高阶Grushin算子的Carleman估计
高阶Grushin算子Δα是在Rn+m的子流形上退化的一组次椭圆算子。本文建立了这些算子的carleman型不等式。它是通过推导格鲁辛-谐波投影的加权Lp−Lq估计来实现的。证明的关键部分是T. Koornwinder和Y. Xu提出的Gegenbauer多项式的加法公式。由此,我们得到了Schrödinger算子−Δα+V在简并流形点上的强唯一连续性,其中V属于某个Llocr(Rn+m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信