{"title":"Relative K-homology of higher-order differential operators","authors":"Magnus Fries","doi":"10.1016/j.jfa.2024.110678","DOIUrl":"10.1016/j.jfa.2024.110678","url":null,"abstract":"<div><p>We extend the notion of a spectral triple to that of a higher-order relative spectral triple, which accommodates several types of hypoelliptic differential operators on manifolds with boundary. The bounded transform of a higher-order relative spectral triple gives rise to a relative <em>K</em>-homology cycle. In the case of an elliptic differential operator on a compact smooth manifold with boundary, we calculate the <em>K</em>-homology boundary map of the constructed relative <em>K</em>-homology cycle to obtain a generalization of the Baum-Douglas-Taylor index theorem.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003665/pdfft?md5=e36d9b99bb0991b52d9d9a26d8663803&pid=1-s2.0-S0022123624003665-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josep M. Gallegos , Mihalis Mourgoglou , Xavier Tolsa
{"title":"Extrapolation of solvability of the regularity and the Poisson regularity problems in rough domains","authors":"Josep M. Gallegos , Mihalis Mourgoglou , Xavier Tolsa","doi":"10.1016/j.jfa.2024.110672","DOIUrl":"10.1016/j.jfa.2024.110672","url":null,"abstract":"<div><p>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, be an open set satisfying the corkscrew condition with <em>n</em>-Ahlfors regular boundary ∂Ω, but without any connectivity assumption. We study the connection between solvability of the regularity problem for divergence form elliptic operators with boundary data in the Hajłasz-Sobolev space <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> and the weak-<span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> property of the associated elliptic measure. In particular, we show that solvability of the regularity problem in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> is equivalent to the solvability of the regularity problem in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> for some <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>. We also prove analogous extrapolation results for the Poisson regularity problem defined on tent spaces. Moreover, under the hypothesis that ∂Ω supports a weak <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-Poincaré inequality, we show that the solvability of the regularity problem in the Hajłasz-Sobolev space <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> is equivalent to a stronger solvability in a Hardy-Sobolev space of tangential derivatives.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003604/pdfft?md5=559d2fce88142d22708d8e9a462e2ff0&pid=1-s2.0-S0022123624003604-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radiation of the energy-critical wave equation with compact support","authors":"Zhen Lei , Xiao Ren , Zhaojie Yang","doi":"10.1016/j.jfa.2024.110670","DOIUrl":"10.1016/j.jfa.2024.110670","url":null,"abstract":"<div><p>We prove exterior energy lower bounds for (nonradial) solutions to the energy-critical nonlinear wave equation in space dimensions <span><math><mn>3</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>5</mn></math></span>, with compactly supported initial data. In particular, it is shown that nontrivial global solutions with compact spatial support must be radiative in a sharp sense. In space dimensions 3 and 4, a nontrivial soliton background is also considered. As an application, we obtain partial results on the rigidity conjecture concerning solutions with the compactness property, including a new proof for the global existence of such solutions.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Embedding C⁎-algebras into the Calkin algebra of ℓp","authors":"March T. Boedihardjo","doi":"10.1016/j.jfa.2024.110669","DOIUrl":"10.1016/j.jfa.2024.110669","url":null,"abstract":"<div><p>Let <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. We show that there is an isomorphism from any separable unital subalgebra of <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>/</mo><mi>K</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> onto a subalgebra of <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mo>/</mo><mi>K</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></math></span> that preserves the Fredholm index. As a consequence, every separable <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra is isomorphic to a subalgebra of <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mo>/</mo><mi>K</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></math></span>. Another consequence is the existence of operators on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> that behave like the essentially normal operators with arbitrary Fredholm indices in the Brown-Douglas-Fillmore theory.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical-space estimates for axisymmetric waves on extremal Kerr spacetime","authors":"Elena Giorgi, Jingbo Wan","doi":"10.1016/j.jfa.2024.110668","DOIUrl":"10.1016/j.jfa.2024.110668","url":null,"abstract":"<div><p>We study axisymmetric solutions to the wave equation on extremal Kerr backgrounds and obtain integrated local energy decay (or Morawetz estimates) through an analysis <em>exclusively in physical-space</em>. Boundedness of the energy and Morawetz estimates for axisymmetric waves in extremal Kerr were first obtained by Aretakis <span><span>[13]</span></span> through the construction of frequency-localized currents used in particular to express the trapping degeneracy. Here we extend to extremal Kerr a method introduced by Stogin <span><span>[63]</span></span> in the sub-extremal case, simplifying Aretakis' derivation of Morawetz estimates through purely classical currents.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucrezia Cossetti , Luca Fanelli , David Krejčiřík
{"title":"Uniform resolvent estimates and absence of eigenvalues of biharmonic operators with complex potentials","authors":"Lucrezia Cossetti , Luca Fanelli , David Krejčiřík","doi":"10.1016/j.jfa.2024.110646","DOIUrl":"10.1016/j.jfa.2024.110646","url":null,"abstract":"<div><p>We quantify the subcriticality of the bilaplacian in dimensions greater than four by providing explicit repulsivity/smallness conditions on complex additive perturbations under which the spectrum remains stable. Our assumptions cover critical Rellich-type potentials too. As a byproduct we obtain uniform resolvent estimates in weighted spaces. Some of the results are new also in the self-adjoint setting.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003343/pdfft?md5=772332e832e0b3b3742e9fe5c59bd027&pid=1-s2.0-S0022123624003343-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fourier–Jacobi models for real unitary groups","authors":"Hang Xue","doi":"10.1016/j.jfa.2024.110645","DOIUrl":"10.1016/j.jfa.2024.110645","url":null,"abstract":"<div><p>We prove the local Gan–Gross–Prasad conjecture for Fourier–Jacobi models of real unitary groups.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marzieh Forough , Eusebio Gardella , Klaus Thomsen
{"title":"Asymptotic lifting for completely positive maps","authors":"Marzieh Forough , Eusebio Gardella , Klaus Thomsen","doi":"10.1016/j.jfa.2024.110655","DOIUrl":"10.1016/j.jfa.2024.110655","url":null,"abstract":"<div><p>Let <em>A</em> and <em>B</em> be <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras with <em>A</em> separable, let <em>I</em> be an ideal in <em>B</em>, and let <span><math><mi>ψ</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi><mo>/</mo><mi>I</mi></math></span> be a completely positive contractive linear map. We show that there is a continuous family <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></math></span>, for <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, of lifts of <em>ψ</em> that are asymptotically linear, asymptotically completely positive and asymptotically contractive. If <em>ψ</em> is of order zero, then <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> can be chosen to have this property asymptotically. If <em>A</em> and <em>B</em> carry continuous actions of a second countable locally compact group <em>G</em> such that <em>I</em> is <em>G</em>-invariant and <em>ψ</em> is equivariant, we show that the family <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> can be chosen to be asymptotically equivariant. If a linear completely positive lift for <em>ψ</em> exists, we can arrange that <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is linear and completely positive for all <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. In the equivariant setting, if <em>A</em>, <em>B</em> and <em>ψ</em> are unital, we show that asymptotically linear unital lifts are only guaranteed to exist if <em>G</em> is amenable. This leads to a new characterization of amenability in terms of the existence of asymptotically equivariant unital sections for quotient maps.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003434/pdfft?md5=65a403e2027f24e6659a35962da123f0&pid=1-s2.0-S0022123624003434-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinqin Li , Winfried Sickel , Dachun Yang , Wen Yuan
{"title":"Wavelet and Fourier analytic characterizations of pointwise multipliers of Besov spaces Bp,ps(Rn) with 0 < p ≤ 1","authors":"Yinqin Li , Winfried Sickel , Dachun Yang , Wen Yuan","doi":"10.1016/j.jfa.2024.110654","DOIUrl":"10.1016/j.jfa.2024.110654","url":null,"abstract":"<div><p>For any <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><mi>s</mi><mo>∈</mo><mi>R</mi></math></span>, the authors prove two types of characterizations of the pointwise multiplier space <span><math><mi>M</mi><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> of the Besov space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. One type is based on wavelet analysis and is an extension of a well-known argument of Yves Meyer. The other type works with Fourier analytic terms. As an application of the above two types of characterizations, the authors further obtain a characterization of bounded functions in the uniform space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>p</mi><mo>,</mo><mrow><mi>unif</mi></mrow></mrow><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> via Haar wavelets in the critical index <span><math><mi>τ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003422/pdfft?md5=ae5d838a01a88bd82da5efd013bbd9f3&pid=1-s2.0-S0022123624003422-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sharp maximal function estimates for linear and multilinear pseudo-differential operators","authors":"Bae Jun Park , Naohito Tomita","doi":"10.1016/j.jfa.2024.110661","DOIUrl":"10.1016/j.jfa.2024.110661","url":null,"abstract":"<div><p>In this paper, we study pointwise estimates for linear and multilinear pseudo-differential operators with exotic symbols in terms of the Fefferman-Stein sharp maximal function and Hardy-Littlewood type maximal function. Especially in the multilinear case, we use a multi-sublinear variant of the classical Hardy-Littlewood maximal function introduced by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González <span><span>[16]</span></span>, which provides more elaborate and natural weighted estimates in the multilinear setting.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}