Journal of Functional Analysis最新文献

筛选
英文 中文
Hausdorffness of certain nilpotent cohomology spaces 某些幂零上同调空间的豪斯多夫性
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-07-02 DOI: 10.1016/j.jfa.2025.111120
Fabian Januszewski , Binyong Sun , Hao Ying
{"title":"Hausdorffness of certain nilpotent cohomology spaces","authors":"Fabian Januszewski ,&nbsp;Binyong Sun ,&nbsp;Hao Ying","doi":"10.1016/j.jfa.2025.111120","DOIUrl":"10.1016/j.jfa.2025.111120","url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> be a smooth representation of a compact Lie group <em>G</em> on a quasi-complete locally convex complex topological vector space. We show that the Lie algebra cohomology space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>•</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> and the Lie algebra homology space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>•</mo></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> are both Hausdorff, where <span><math><mi>u</mi></math></span> is the nilpotent radical of a parabolic subalgebra of the complexified Lie algebra <span><math><mi>g</mi></math></span> of <em>G</em>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111120"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144570096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An epiperimetric inequality for odd frequencies in the thin obstacle problem 薄型障碍问题中奇数频率的经验不等式
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-07-02 DOI: 10.1016/j.jfa.2025.111115
Matteo Carducci , Bozhidar Velichkov
{"title":"An epiperimetric inequality for odd frequencies in the thin obstacle problem","authors":"Matteo Carducci ,&nbsp;Bozhidar Velichkov","doi":"10.1016/j.jfa.2025.111115","DOIUrl":"10.1016/j.jfa.2025.111115","url":null,"abstract":"<div><div>We prove for the first time an epiperimetric inequality for the thin obstacle Weiss' energy with odd frequencies and we apply it to solutions to the thin obstacle problem with general <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>γ</mi></mrow></msup></math></span> obstacle. In particular, we obtain the rate of convergence of the blow-up sequences at points of odd frequencies and the regularity of the strata of the corresponding contact set. We also recover the frequency gap for odd frequencies obtained by Savin and Yu.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111115"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal amenability of the radial subalgebra in free quantum group factors 自由量子群因子中径向子代数的极大适应性
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-07-02 DOI: 10.1016/j.jfa.2025.111118
Roland Vergnioux , Xumin Wang
{"title":"Maximal amenability of the radial subalgebra in free quantum group factors","authors":"Roland Vergnioux ,&nbsp;Xumin Wang","doi":"10.1016/j.jfa.2025.111118","DOIUrl":"10.1016/j.jfa.2025.111118","url":null,"abstract":"<div><div>We show that the radial MASA in the orthogonal free quantum group algebra <span><math><mi>L</mi><mo>(</mo><mi>F</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> is maximal amenable if <em>N</em> is large enough, using the Asymptotic Orthogonality Property. This relies on a detailed study of the corresponding bimodule, for which we construct in particular a quantum analogue of Rădulescu's basis. As a byproduct we also obtain the value of the Pukánszky invariant for this MASA.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111118"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time periodic and almost periodic viscosity solutions of contact Hamilton-Jacobi equations on Tn Tn上接触Hamilton-Jacobi方程的时间周期和概周期粘性解
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-07-02 DOI: 10.1016/j.jfa.2025.111121
Kaizhi Wang , Jun Yan , Kai Zhao
{"title":"Time periodic and almost periodic viscosity solutions of contact Hamilton-Jacobi equations on Tn","authors":"Kaizhi Wang ,&nbsp;Jun Yan ,&nbsp;Kai Zhao","doi":"10.1016/j.jfa.2025.111121","DOIUrl":"10.1016/j.jfa.2025.111121","url":null,"abstract":"<div><div>This paper concerns with the time periodic viscosity solution problem for a class of evolutionary contact Hamilton-Jacobi equations with time independent Hamiltonians on the torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Under certain suitable assumptions we show that the equation has a non-trivial <em>T</em>-periodic viscosity solution if and only if <span><math><mi>T</mi><mo>∈</mo><mi>D</mi></math></span>, where <em>D</em> is a dense subset of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>. Moreover, we clarify the structure of <em>D</em>. As a consequence, we also study the existence of Bohr almost periodic viscosity solutions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111121"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144570099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limit formulas for norms of tensor power operators 张量幂算子范数的极限公式
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-07-02 DOI: 10.1016/j.jfa.2025.111113
Guillaume Aubrun , Alexander Müller-Hermes
{"title":"Limit formulas for norms of tensor power operators","authors":"Guillaume Aubrun ,&nbsp;Alexander Müller-Hermes","doi":"10.1016/j.jfa.2025.111113","DOIUrl":"10.1016/j.jfa.2025.111113","url":null,"abstract":"<div><div>Given an operator <span><math><mi>ϕ</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> between Banach spaces, we consider its tensor powers <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> as operators from the <em>k</em>-fold injective tensor product of <em>X</em> to the <em>k</em>-fold projective tensor product of <em>Y</em>. We show that after taking the <em>k</em>th root, the operator norm of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> converges to the 2-dominated norm <span><math><msubsup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>, one of the standard operator ideal norms.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111113"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144570097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The spectral gap of a Gaussian quantum Markovian generator 高斯量子马尔可夫发生器的谱隙
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-07-02 DOI: 10.1016/j.jfa.2025.111119
F. Fagnola, D. Poletti, E. Sasso, V. Umanità
{"title":"The spectral gap of a Gaussian quantum Markovian generator","authors":"F. Fagnola,&nbsp;D. Poletti,&nbsp;E. Sasso,&nbsp;V. Umanità","doi":"10.1016/j.jfa.2025.111119","DOIUrl":"10.1016/j.jfa.2025.111119","url":null,"abstract":"<div><div>Gaussian quantum Markov semigroups are the natural non-commutative extension of classical Ornstein-Uhlenbeck semigroups. They arise in open quantum systems of bosons where canonical non-commuting random variables of positions and momenta come into play. If there exists a faithful invariant density we explicitly compute the optimal exponential convergence rate, namely the spectral gap of the generator, in non-commutative <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> spaces determined by the invariant density showing that the exact value is the lowest eigenvalue of a certain matrix determined by the diffusion and drift matrices. The spectral gap turns out to depend on the non-commutative <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> space considered, whether the one determined by the so-called GNS or KMS multiplication by the square root of the invariant density. In the first case, it is strictly positive if and only if there is the maximum number of linearly independent noises. While, we exhibit explicit examples in which it is strictly positive only with KMS multiplication. We do not assume any symmetry or quantum detailed balance condition with respect to the invariant density.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111119"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-sided Muckenhoupt weights and one-sided weakly porous sets in R 单侧Muckenhoupt权值和单侧弱多孔集
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-07-02 DOI: 10.1016/j.jfa.2025.111110
Hugo Aimar , Ivana Gómez , Ignacio Gómez Vargas , Francisco Javier Martín-Reyes
{"title":"One-sided Muckenhoupt weights and one-sided weakly porous sets in R","authors":"Hugo Aimar ,&nbsp;Ivana Gómez ,&nbsp;Ignacio Gómez Vargas ,&nbsp;Francisco Javier Martín-Reyes","doi":"10.1016/j.jfa.2025.111110","DOIUrl":"10.1016/j.jfa.2025.111110","url":null,"abstract":"<div><div>In this work, we introduce the geometric concept of one-sided weakly porous sets in the real line and show that a set <span><math><mi>E</mi><mo>⊂</mo><mi>R</mi></math></span> satisfies <span><math><mi>d</mi><msup><mrow><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>∈</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for some <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> if and only if <em>E</em> is right-sided weakly porous. Furthermore, we find that the property of being both left-sided and right-sided weakly porous is equivalent to the recent weakly porous condition discussed in the bibliography, which, in turn, was previously found to be intimately related to the usual class of Muckenhoupt weights <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111110"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random geometric graphs in reflexive Banach spaces 自反Banach空间中的随机几何图
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-07-02 DOI: 10.1016/j.jfa.2025.111112
József Balogh , Mark Walters , András Zsák
{"title":"Random geometric graphs in reflexive Banach spaces","authors":"József Balogh ,&nbsp;Mark Walters ,&nbsp;András Zsák","doi":"10.1016/j.jfa.2025.111112","DOIUrl":"10.1016/j.jfa.2025.111112","url":null,"abstract":"<div><div>We investigate a random geometric graph model introduced by Bonato and Janssen. The vertices are the points of a countable dense set <em>S</em> in a (necessarily separable) normed vector space <em>X</em>, and each pair of points are joined independently with some fixed probability <em>p</em> (with <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn></math></span>) if they are less than distance 1 apart. A countable dense set <em>S</em> in a normed space is <em>Rado</em>, if the resulting graph is almost surely unique up to isomorphism: that is any two such graphs are, almost surely, isomorphic.</div><div>Not surprisingly, understanding which sets are Rado is closely related to the geometry of the underlying normed space. It turns out that a key question is in which spaces must step-isometries (maps that preserve the integer parts of distances) on dense subsets necessarily be isometries. We answer this question for a large class of Banach spaces including all strictly convex reflexive spaces. In the process we prove results on the interplay between the norm topology and weak topology that may be of independent interest.</div><div>As a consequence of these Banach space results we show that almost all countable dense sets in strictly convex reflexive spaces are strongly non-Rado (that is, any two graphs are almost surely non-isomorphic). However, we show that there do exist Rado sets even in <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Finally we construct a Banach space in which all countable dense set are strongly non-Rado.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111112"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quantitative Gidas-Ni-Nirenberg-type result for the p-Laplacian via integral identities 基于积分恒等式的p- laplace的一个定量gidas - ni - nirenberg型结果
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-06-26 DOI: 10.1016/j.jfa.2025.111108
Serena Dipierro , João Gonçalves da Silva , Giorgio Poggesi , Enrico Valdinoci
{"title":"A quantitative Gidas-Ni-Nirenberg-type result for the p-Laplacian via integral identities","authors":"Serena Dipierro ,&nbsp;João Gonçalves da Silva ,&nbsp;Giorgio Poggesi ,&nbsp;Enrico Valdinoci","doi":"10.1016/j.jfa.2025.111108","DOIUrl":"10.1016/j.jfa.2025.111108","url":null,"abstract":"<div><div>We prove a quantitative version of a Gidas-Ni-Nirenberg-type symmetry result involving the <em>p</em>-Laplacian.</div><div>Quantitative stability is achieved here via integral identities based on the proof of rigidity established by J. Serra in 2013, which extended to general dimension and the <em>p</em>-Laplacian operator an argument proposed by P.-L. Lions in dimension 2 for the classical Laplacian.</div><div>Stability results for the classical Gidas-Ni-Nirenberg symmetry theorem (involving the classical Laplacian) via the method of moving planes were established by Rosset in 1994 and by Ciraolo, Cozzi, Perugini, Pollastro in 2024.</div><div>To the authors' knowledge, the present paper provides the first quantitative Gidas-Ni-Nirenberg-type result involving the <em>p</em>-Laplacian for <span><math><mi>p</mi><mo>≠</mo><mn>2</mn></math></span>. Even for the classical Laplacian (i.e., for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>), this is the first time that integral identities are used to achieve stability for a Gidas-Ni-Nirenberg-type result.</div><div>In passing, we obtain a quantitative estimate for the measure of the singular set and an explicit uniform gradient bound.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111108"},"PeriodicalIF":1.7,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144536014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anderson localization for CMV matrices with Verblunsky coefficients defined by the hyperbolic toral automorphism 由双曲总自同构定义的具有Verblunsky系数的CMV矩阵的Anderson定位
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-06-19 DOI: 10.1016/j.jfa.2025.111103
Yanxue Lin , Shuzheng Guo , Daxiong Piao
{"title":"Anderson localization for CMV matrices with Verblunsky coefficients defined by the hyperbolic toral automorphism","authors":"Yanxue Lin ,&nbsp;Shuzheng Guo ,&nbsp;Daxiong Piao","doi":"10.1016/j.jfa.2025.111103","DOIUrl":"10.1016/j.jfa.2025.111103","url":null,"abstract":"<div><div>In this paper, we prove the large deviation estimates and Anderson localization for CMV matrices on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> with Verblunsky coefficients defined dynamically by the hyperbolic toral automorphism. Part of positivity results on the Lyapunov exponents of Chulaevsky-Spencer <span><span>[9]</span></span> and Anderson localization results of Bourgain-Schlag <span><span>[6]</span></span> on Schrödinger operators with strongly mixing potentials are extended to CMV matrices.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111103"},"PeriodicalIF":1.7,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144489470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信