{"title":"Duality, BMO and Hankel operators on Bernstein spaces","authors":"Carlo Bellavita , Marco M. Peloso","doi":"10.1016/j.jfa.2024.110708","DOIUrl":"10.1016/j.jfa.2024.110708","url":null,"abstract":"<div><div>In this paper we deal with the problem of describing the dual space <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of the Bernstein space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>, that is the space of entire functions of exponential type (at most) <span><math><mi>κ</mi><mo>></mo><mn>0</mn></math></span> whose restriction to the real line is Lebesgue integrable. We provide several characterizations, showing that such dual space can be described as a quotient of the space of entire functions of exponential type <em>κ</em> whose restriction to the real line are in a suitable BMO-type space, or as the space of symbols <em>b</em> for which the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> is bounded on the Paley–Wiener space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>. We also provide a characterization of <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> as the BMO space w.r.t. the Clark measures of the inner function <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mn>2</mn><mi>κ</mi><mi>z</mi></mrow></msup></math></span> on the upper half-plane, in analogy with the known description of the dual of backward-shift invariant 1-spaces on the torus. Furthermore, we show that the orthogonal projection <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>→</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> induces a bounded operator from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> onto <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div><div>Finally, we show that <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> is the dual space of a suitable VMO-type space or as the space of symbols <em>b</em> for which the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> on the Paley–Wiener space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is compact.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110708"},"PeriodicalIF":1.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sharp analytic version of Fefferman's inequality","authors":"Tomasz Gałązka, Adam Osękowski","doi":"10.1016/j.jfa.2024.110707","DOIUrl":"10.1016/j.jfa.2024.110707","url":null,"abstract":"<div><div>Let <span><math><mi>T</mi></math></span> be a unit circle. Assume further that <em>f</em> is an element of the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> and <em>g</em> belongs to the analytic <em>BMO</em> space on <span><math><mi>T</mi></math></span>. The paper contains the identification of the optimal universal constant <em>C</em> in the estimate<span><span><span><math><mrow><mo>|</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><munder><mo>∫</mo><mrow><mi>T</mi></mrow></munder><mover><mrow><mi>f</mi><mo>(</mo><mi>ζ</mi><mo>)</mo></mrow><mo>‾</mo></mover><mi>g</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><mtext>d</mtext><mi>ζ</mi><mo>|</mo></mrow><mo>≤</mo><mi>C</mi><mspace></mspace><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><msub><mrow><mo>‖</mo><mi>g</mi><mo>‖</mo></mrow><mrow><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>.</mo></math></span></span></span> Actually, the inequality is studied in the stronger form, involving the Littlewood-Paley function on the left and the sharp maximal function of <em>g</em> on the right. The proof rests on the construction of an appropriate plurisuperharmonic function on a parabolic domain and the application of probabilistic techniques.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110707"},"PeriodicalIF":1.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hermite expansions for spaces of functions with nearly optimal time-frequency decay","authors":"Lenny Neyt , Joachim Toft , Jasson Vindas","doi":"10.1016/j.jfa.2024.110706","DOIUrl":"10.1016/j.jfa.2024.110706","url":null,"abstract":"<div><div>We establish Hermite expansion characterizations for several subspaces of the Fréchet space of functions on the real line satisfying<span><span><span><math><mo>|</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>≲</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>λ</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mo>|</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>|</mo><mo>≲</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>λ</mi><mo>)</mo><msup><mrow><mi>ξ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mo>∀</mo><mi>λ</mi><mo>></mo><mn>0</mn><mo>.</mo></math></span></span></span> In particular, we extend and improve Fourier characterizations of the so-called proper Pilipović spaces obtained in <span><span>[21]</span></span>. The main ingredients in our proofs are the Bargmann transform and some achieved optimal forms of the Phragmén-Lindelöf principle.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110706"},"PeriodicalIF":1.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blowup dynamics for smooth equivariant solutions to energy critical Landau-Lifschitz flow","authors":"Jitao Xu, Lifeng Zhao","doi":"10.1016/j.jfa.2024.110704","DOIUrl":"10.1016/j.jfa.2024.110704","url":null,"abstract":"<div><div>In this paper, we study the energy critical 1-equivariant Landau-Lifschitz flow mapping <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with arbitrary given coefficients <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>R</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></math></span>. We prove that there exists a codimension one smooth well-localized set of initial data arbitrarily close to the ground state which generates type-II finite-time blowup solutions, and give a precise description of the corresponding singularity formation. In our proof, both the Schrödinger part and the heat part play important roles in the construction of approximate solutions and the mixed energy/Morawetz functional. However, the blowup rate is independent of the coefficients.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110704"},"PeriodicalIF":1.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the classification of function algebras on subvarieties of noncommutative operator balls","authors":"Jeet Sampat, Orr Moshe Shalit","doi":"10.1016/j.jfa.2024.110703","DOIUrl":"10.1016/j.jfa.2024.110703","url":null,"abstract":"<div><div>We study algebras of bounded noncommutative (nc) functions on unit balls of operator spaces (nc operator balls) and on their subvarieties. Considering the example of the nc unit polydisk we show that these algebras, while having a natural operator algebra structure, might not be the multiplier algebra of any reasonable nc reproducing kernel Hilbert space (RKHS). After examining additional subtleties of the nc RKHS approach, we turn to study the structure and representation theory of these algebras using function theoretic and operator algebraic tools. We show that the underlying nc variety is a complete invariant for the algebra of uniformly continuous nc functions on a homogeneous subvariety, in the sense that two such algebras are completely isometrically isomorphic if and only if the subvarieties are nc biholomorphic. We obtain extension and rigidity results for nc maps between subvarieties of nc operator balls corresponding to injective spaces that imply that a biholomorphism between homogeneous varieties extends to a biholomorphism between the ambient balls, which can be modified to a linear isomorphism. Thus, the algebra of uniformly continuous nc functions on nc operator balls, and even its restriction to certain subvarieties, completely determine the operator space up to completely isometric isomorphism.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110703"},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuous asymmetric Doob inequalities in noncommutative symmetric spaces","authors":"Yong Jiao, Hui Li, Sijie Luo, Lian Wu","doi":"10.1016/j.jfa.2024.110701","DOIUrl":"10.1016/j.jfa.2024.110701","url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> be a noncommutative probability space equipped with a filtration <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub></math></span> whose union is <span><math><msup><mrow><mi>w</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-dense in <span><math><mi>M</mi></math></span>, and let <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub></math></span> be the associated conditional expectations. We prove in the present paper that if the symmetric space <span><math><mi>E</mi><mo>∈</mo><mi>Int</mi><mo>[</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo></math></span> with <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo><</mo><mn>2</mn></math></span> and <em>E</em> is <span><math><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>θ</mi><mo>)</mo></math></span>-convex and <em>w</em>-concave with <span><math><mi>p</mi><mo><</mo><mi>w</mi><mo><</mo><mn>2</mn></math></span>, then the following holds:<span><span><span><math><msub><mrow><mo>‖</mo><msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub><mo>‖</mo></mrow><mrow><mi>E</mi><mo>(</mo><mi>M</mi><mo>;</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>θ</mi></mrow></msubsup><mo>)</mo></mrow></msub><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>E</mi><mo>,</mo><mi>θ</mi></mrow></msub><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msubsup></mrow></msub><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span></span></span> provided <span><math><mn>1</mn><mo>−</mo><mi>p</mi><mo>/</mo><mn>2</mn><mo><</mo><mi>θ</mi><mo><</mo><mn>1</mn></math></span>. Similar result holds for <span><math><mi>x</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>. Moreover, if <span><math><mi>E</mi><mo>∈</mo><mi>Int</mi><mo>[</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo></math></span> with <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo><</mo><mn>2</mn></math></span> and <em>E</em> is <em>w</em>-concave with <span><math><mn>2</","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110701"},"PeriodicalIF":1.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional L1-Lp inequalities in the CAR algebra","authors":"Yong Jiao, Sijie Luo, Dejian Zhou","doi":"10.1016/j.jfa.2024.110700","DOIUrl":"10.1016/j.jfa.2024.110700","url":null,"abstract":"<div><div>In the present paper, we use the semigroup method to investigate various functional inequalities invoking <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> norms in the framework of canonical anti-commuting relations algebra (CAR algebra for short). As the main results, we obtain the Poincaré inequality for Talagrand type sum, Eldan-Gross inequality for projections, and the Talagrand influence inequality along with its strengthening form in the CAR algebra. All our results strengthen the noncommutative Poincaré inequality of Efraim and Lust-Piquard at several points. We conclude the paper with two applications of our inequalities. In the first application, we apply the noncommutative Eldan-Gross inequality to derive two KKL-type inequalities in the CAR algebra, which are closely related to the quantum KKL conjecture of Montanaro and Osborne. The second application is the CAR algebra counterpart of the superconcentration phenomenon derived from the noncommutative Talagrand influence inequality.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110700"},"PeriodicalIF":1.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inclusions of simple C⁎-algebras arising from compact group actions","authors":"Miho Mukohara","doi":"10.1016/j.jfa.2024.110702","DOIUrl":"10.1016/j.jfa.2024.110702","url":null,"abstract":"<div><div>Inclusions of operator algebras have long been studied. In particular, inclusions arising from actions of compact groups on factors were studied by Izumi-Longo-Popa and others. The correspondence between intermediate subfactors and subgroups is called the Galois correspondence. Analogues for actions on C<sup>⁎</sup>-algebras have been studied by Izumi, Cameron-Smith, Peligrad, and others. In this article, we give examples of compact group actions on simple C<sup>⁎</sup>-algebras for which the Galois correspondence holds.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110702"},"PeriodicalIF":1.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On dual Kadec norms","authors":"Petr Hájek","doi":"10.1016/j.jfa.2024.110698","DOIUrl":"10.1016/j.jfa.2024.110698","url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>)</mo></math></span> be a Banach space such that all <span><math><msup><mrow><mi>w</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convergent sequences in the dual unit sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span> are also norm convergent. Then the weak<sup>⁎</sup> and norm topologies agree on <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span>. By known results it implies that <em>X</em> has a renorming whose dual is locally uniformly rotund, hence also <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Fréchet smooth. In particular, <em>X</em> is an Asplund space. Our results also lend an alternative proof of the celebrated Josefson-Nissenzweig theorem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110698"},"PeriodicalIF":1.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Imprimitivity theorems and self-similar actions on Fell bundles","authors":"Anna Duwenig , Boyu Li","doi":"10.1016/j.jfa.2024.110699","DOIUrl":"10.1016/j.jfa.2024.110699","url":null,"abstract":"<div><div>We introduce the notion of self-similar actions of groupoids on other groupoids and Fell bundles. This leads to a new imprimitivity theorem arising from such dynamics, generalizing many earlier imprimitivity theorems involving group and groupoid actions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110699"},"PeriodicalIF":1.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}