On the global in time existence and uniqueness of solutions to the Boltzmann hierarchy

IF 1.7 2区 数学 Q1 MATHEMATICS
Ioakeim Ampatzoglou , Joseph K. Miller , Nataša Pavlović , Maja Tasković
{"title":"On the global in time existence and uniqueness of solutions to the Boltzmann hierarchy","authors":"Ioakeim Ampatzoglou ,&nbsp;Joseph K. Miller ,&nbsp;Nataša Pavlović ,&nbsp;Maja Tasković","doi":"10.1016/j.jfa.2025.111079","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we establish the global in time existence and uniqueness of solutions to the Boltzmann hierarchy, a hierarchy of equations instrumental for the rigorous derivation of the Boltzmann equation from many particles. Inspired by available <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-based a-priori estimate for solutions to the Boltzmann equation, we develop the polynomially weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> a-priori bounds for solutions to the Boltzmann hierarchy and handle the factorial growth of the number of terms in the Dyson's series by reorganizing the sum through a combinatorial technique known as the Klainerman-Machedon board game argument. This paper is the first work that exploits such a combinatorial technique in conjunction with an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-based estimate to prove uniqueness of the mild solutions to the Boltzmann hierarchy. Our proof of existence of global in time mild solutions to the Boltzmann hierarchy for admissible initial data is constructive and it employs known global in time solutions to the Boltzmann equation via a Hewitt-Savage type theorem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111079"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002617","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we establish the global in time existence and uniqueness of solutions to the Boltzmann hierarchy, a hierarchy of equations instrumental for the rigorous derivation of the Boltzmann equation from many particles. Inspired by available L-based a-priori estimate for solutions to the Boltzmann equation, we develop the polynomially weighted L a-priori bounds for solutions to the Boltzmann hierarchy and handle the factorial growth of the number of terms in the Dyson's series by reorganizing the sum through a combinatorial technique known as the Klainerman-Machedon board game argument. This paper is the first work that exploits such a combinatorial technique in conjunction with an L-based estimate to prove uniqueness of the mild solutions to the Boltzmann hierarchy. Our proof of existence of global in time mild solutions to the Boltzmann hierarchy for admissible initial data is constructive and it employs known global in time solutions to the Boltzmann equation via a Hewitt-Savage type theorem.
玻尔兹曼级数解的全局时间存在唯一性
本文建立了玻尔兹曼层次方程组解在时间上的全局存在唯一性。玻尔兹曼层次方程组有助于从许多粒子中严格推导玻尔兹曼方程。受Boltzmann方程解的可用的基于L∞的先验估计的启发,我们开发了Boltzmann层次解的多项式加权L∞先验界,并通过一种称为Klainerman-Machedon棋盘游戏参数的组合技术重新组织和来处理Dyson级数中项数的阶乘增长。本文是第一个利用这种组合技术与基于L∞的估计相结合来证明玻尔兹曼层次温和解的唯一性的工作。我们对可容许初始数据的玻尔兹曼层次的全局时间温和解的存在性的证明是建设性的,它通过Hewitt-Savage型定理使用了已知的玻尔兹曼方程的全局时间解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信