Ancient and expanding spin ALE Ricci flows

IF 1.6 2区 数学 Q1 MATHEMATICS
Isaac M. Lopez, Tristan Ozuch
{"title":"Ancient and expanding spin ALE Ricci flows","authors":"Isaac M. Lopez,&nbsp;Tristan Ozuch","doi":"10.1016/j.jfa.2025.111062","DOIUrl":null,"url":null,"abstract":"<div><div>We classify spin ALE ancient Ricci flows and spin ALE expanding solitons with suitable groups at infinity. In particular, the only spin ancient Ricci flows with groups at infinity in <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span> and mild decay at infinity are hyperkähler ALE metrics. The main idea of the proof, of independent interest, consists in showing that the large-scale behavior of Perelman's <em>μ</em>-functional on any ALE orbifold with non-negative scalar curvature is controlled by a renormalized <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>ALE</mi></mrow></msub></math></span>-functional related to a notion of weighted mass.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111062"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002447","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We classify spin ALE ancient Ricci flows and spin ALE expanding solitons with suitable groups at infinity. In particular, the only spin ancient Ricci flows with groups at infinity in SU(2) and mild decay at infinity are hyperkähler ALE metrics. The main idea of the proof, of independent interest, consists in showing that the large-scale behavior of Perelman's μ-functional on any ALE orbifold with non-negative scalar curvature is controlled by a renormalized λALE-functional related to a notion of weighted mass.
古老而膨胀的自旋ALE Ricci流
我们对自旋ALE古Ricci流和自旋ALE膨胀孤子在无穷远处的合适群进行了分类。特别是,SU(2)中唯一具有无穷远群的自旋古Ricci流和无穷远的轻微衰减是hyperkähler ALE度量。这个证明的主要思想,是一个独立的兴趣,在于证明佩雷尔曼μ泛函在任何非负标量曲率的ALE轨道上的大尺度行为是由一个与加权质量概念相关的重整化λALE泛函控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信