{"title":"一类共形不变全非线性算子测度的弱收敛性","authors":"Xi-Nan Ma , Wangzhe Wu","doi":"10.1016/j.jfa.2025.111080","DOIUrl":null,"url":null,"abstract":"<div><div>Trudinger-Wang introduced the notion of k-Hessian measure associated with k-convex functions, not necessarily continuous, and proved the weak continuity of the associated k-Hessian measure with respect to local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> convergence in 1999. In this paper we find a special divergence structure for the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-Yamabe operator which is conformally invariant, and prove the weak continuity of the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-Yamabe operator with respect to local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> convergence.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111080"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The weak convergence for a measure related to a class of conformally invariant fully nonlinear operator\",\"authors\":\"Xi-Nan Ma , Wangzhe Wu\",\"doi\":\"10.1016/j.jfa.2025.111080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Trudinger-Wang introduced the notion of k-Hessian measure associated with k-convex functions, not necessarily continuous, and proved the weak continuity of the associated k-Hessian measure with respect to local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> convergence in 1999. In this paper we find a special divergence structure for the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-Yamabe operator which is conformally invariant, and prove the weak continuity of the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-Yamabe operator with respect to local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> convergence.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 9\",\"pages\":\"Article 111080\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002629\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002629","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The weak convergence for a measure related to a class of conformally invariant fully nonlinear operator
Trudinger-Wang introduced the notion of k-Hessian measure associated with k-convex functions, not necessarily continuous, and proved the weak continuity of the associated k-Hessian measure with respect to local convergence in 1999. In this paper we find a special divergence structure for the -Yamabe operator which is conformally invariant, and prove the weak continuity of the -Yamabe operator with respect to local convergence.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis