The weak convergence for a measure related to a class of conformally invariant fully nonlinear operator

IF 1.7 2区 数学 Q1 MATHEMATICS
Xi-Nan Ma , Wangzhe Wu
{"title":"The weak convergence for a measure related to a class of conformally invariant fully nonlinear operator","authors":"Xi-Nan Ma ,&nbsp;Wangzhe Wu","doi":"10.1016/j.jfa.2025.111080","DOIUrl":null,"url":null,"abstract":"<div><div>Trudinger-Wang introduced the notion of k-Hessian measure associated with k-convex functions, not necessarily continuous, and proved the weak continuity of the associated k-Hessian measure with respect to local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> convergence in 1999. In this paper we find a special divergence structure for the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-Yamabe operator which is conformally invariant, and prove the weak continuity of the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-Yamabe operator with respect to local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> convergence.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111080"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002629","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Trudinger-Wang introduced the notion of k-Hessian measure associated with k-convex functions, not necessarily continuous, and proved the weak continuity of the associated k-Hessian measure with respect to local L1 convergence in 1999. In this paper we find a special divergence structure for the σk-Yamabe operator which is conformally invariant, and prove the weak continuity of the σk-Yamabe operator with respect to local L1 convergence.
一类共形不变全非线性算子测度的弱收敛性
Trudinger-Wang在1999年引入了与k-凸函数相关的k-Hessian测度的概念,该概念不一定连续,并证明了相关k-Hessian测度在局部L1收敛下的弱连续性。本文给出了σk-Yamabe算子的一个保形不变的特殊散度结构,并证明了σk-Yamabe算子在局部L1收敛下的弱连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信