On steady states for the Vlasov-Schrödinger-Poisson system

IF 1.7 2区 数学 Q1 MATHEMATICS
Younghun Hong , Sangdon Jin
{"title":"On steady states for the Vlasov-Schrödinger-Poisson system","authors":"Younghun Hong ,&nbsp;Sangdon Jin","doi":"10.1016/j.jfa.2025.111069","DOIUrl":null,"url":null,"abstract":"<div><div>The Vlasov-Schrödinger-Poisson system is a kinetic-quantum hybrid model describing quasi-lower dimensional electron gases. For this system, we construct a large class of 2D kinetic/1D quantum steady states in a bounded domain as generalized free energy minimizers, and we show their finite subband structure, monotonicity, uniqueness and <em>conditional</em> dynamical stability. Our proof is based on the concentration-compactness principle, but some additional difficulties arise due to lack of compactness originated from the hybrid nature (see <span><span>Remark 1.9</span></span>). To overcome the difficulties, we introduce a 3-step refinement of a minimizing sequence by rearrangement and partial minimization problems, and the coercivity lemma for the free energy (<span><span>Lemma 5.3</span></span>) is crucially employed.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111069"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002514","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Vlasov-Schrödinger-Poisson system is a kinetic-quantum hybrid model describing quasi-lower dimensional electron gases. For this system, we construct a large class of 2D kinetic/1D quantum steady states in a bounded domain as generalized free energy minimizers, and we show their finite subband structure, monotonicity, uniqueness and conditional dynamical stability. Our proof is based on the concentration-compactness principle, but some additional difficulties arise due to lack of compactness originated from the hybrid nature (see Remark 1.9). To overcome the difficulties, we introduce a 3-step refinement of a minimizing sequence by rearrangement and partial minimization problems, and the coercivity lemma for the free energy (Lemma 5.3) is crucially employed.
关于Vlasov-Schrödinger-Poisson系统的稳态
Vlasov-Schrödinger-Poisson系统是描述准低维电子气体的动力学量子混合模型。对于该系统,我们在有界域中构造了一类广义自由能极小值的二维动力学/一维量子稳态,并证明了它们的有限子带结构、单调性、唯一性和条件动力学稳定性。我们的证明是基于浓度-紧致性原理,但由于混合性质导致的紧致性不足,会产生一些额外的困难(见备注1.9)。为了克服这些困难,我们引入了一种通过重排和部分最小化问题对最小化序列进行三步细化的方法,并关键地使用了自由能的矫顽力引理(引理5.3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信