Regularity for the fractional p-Laplace equation

IF 1.7 2区 数学 Q1 MATHEMATICS
Verena Bögelein , Frank Duzaar , Naian Liao , Giovanni Molica Bisci , Raffaella Servadei
{"title":"Regularity for the fractional p-Laplace equation","authors":"Verena Bögelein ,&nbsp;Frank Duzaar ,&nbsp;Naian Liao ,&nbsp;Giovanni Molica Bisci ,&nbsp;Raffaella Servadei","doi":"10.1016/j.jfa.2025.111078","DOIUrl":null,"url":null,"abstract":"<div><div>Higher Sobolev and Hölder regularity is studied for local weak solutions of the fractional <em>p</em>-Laplace equation of order <em>s</em> in the case <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>. Depending on the regime considered, i.e.<span><span><span><math><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>≤</mo><mfrac><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mspace></mspace><mtext>or</mtext><mspace></mspace><mfrac><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn><mo>,</mo></math></span></span></span> precise local estimates are proven. The relevant estimates are stable if the fractional order <em>s</em> reaches 1; the known Sobolev regularity estimates for the local <em>p</em>-Laplace are recovered. The case <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> reproduces the almost <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msubsup></math></span>-regularity for the fractional Laplace equation of any order <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111078"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002605","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Higher Sobolev and Hölder regularity is studied for local weak solutions of the fractional p-Laplace equation of order s in the case p2. Depending on the regime considered, i.e.0<sp2porp2p<s<1, precise local estimates are proven. The relevant estimates are stable if the fractional order s reaches 1; the known Sobolev regularity estimates for the local p-Laplace are recovered. The case p=2 reproduces the almost Wloc1+s,2-regularity for the fractional Laplace equation of any order s(0,1).
分数阶p-拉普拉斯方程的正则性
研究了p≥2时s阶分数阶p- laplace方程局部弱解的高Sobolev正则性和Hölder正则性。根据所考虑的区域,即0<;s≤p−2porp−2p<s<1,证明了精确的局部估计。当分数阶s达到1时,相关估计是稳定的;恢复了局部p-拉普拉斯的已知Sobolev正则性估计。p=2的情况再现了任意阶s∈(0,1)的分数阶拉普拉斯方程的几乎Wloc1+s,2正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信