凸域上Stokes方程的Neumann问题

IF 1.6 2区 数学 Q1 MATHEMATICS
Jun Geng , Zhongwei Shen
{"title":"凸域上Stokes方程的Neumann问题","authors":"Jun Geng ,&nbsp;Zhongwei Shen","doi":"10.1016/j.jfa.2025.111151","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the Neumann boundary value problems for the Stokes equations in a convex domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We obtain nontangential maximal function estimates in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> estimates for <em>p</em> in certain ranges depending on <em>d</em>. These ranges are larger than the known ranges for Lipschitz domains. The proof relies on a <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msup></math></span> estimate for the Stokes equations in convex domains.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111151"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neumann problems for the Stokes equations in convex domains\",\"authors\":\"Jun Geng ,&nbsp;Zhongwei Shen\",\"doi\":\"10.1016/j.jfa.2025.111151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the Neumann boundary value problems for the Stokes equations in a convex domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We obtain nontangential maximal function estimates in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> estimates for <em>p</em> in certain ranges depending on <em>d</em>. These ranges are larger than the known ranges for Lipschitz domains. The proof relies on a <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msup></math></span> estimate for the Stokes equations in convex domains.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 11\",\"pages\":\"Article 111151\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003337\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003337","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Rd上凸域上Stokes方程的Neumann边值问题。我们得到了Lp和W1上的非切极大函数估计,p在一定范围内的估计,这些范围比已知的Lipschitz域的范围要大。该证明依赖于凸域上Stokes方程的w2,2估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neumann problems for the Stokes equations in convex domains
This paper studies the Neumann boundary value problems for the Stokes equations in a convex domain in Rd. We obtain nontangential maximal function estimates in Lp and W1,p estimates for p in certain ranges depending on d. These ranges are larger than the known ranges for Lipschitz domains. The proof relies on a W2,2 estimate for the Stokes equations in convex domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信