{"title":"凸域上Stokes方程的Neumann问题","authors":"Jun Geng , Zhongwei Shen","doi":"10.1016/j.jfa.2025.111151","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the Neumann boundary value problems for the Stokes equations in a convex domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We obtain nontangential maximal function estimates in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> estimates for <em>p</em> in certain ranges depending on <em>d</em>. These ranges are larger than the known ranges for Lipschitz domains. The proof relies on a <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msup></math></span> estimate for the Stokes equations in convex domains.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111151"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neumann problems for the Stokes equations in convex domains\",\"authors\":\"Jun Geng , Zhongwei Shen\",\"doi\":\"10.1016/j.jfa.2025.111151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the Neumann boundary value problems for the Stokes equations in a convex domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We obtain nontangential maximal function estimates in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> estimates for <em>p</em> in certain ranges depending on <em>d</em>. These ranges are larger than the known ranges for Lipschitz domains. The proof relies on a <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msup></math></span> estimate for the Stokes equations in convex domains.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 11\",\"pages\":\"Article 111151\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003337\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003337","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Neumann problems for the Stokes equations in convex domains
This paper studies the Neumann boundary value problems for the Stokes equations in a convex domain in . We obtain nontangential maximal function estimates in and estimates for p in certain ranges depending on d. These ranges are larger than the known ranges for Lipschitz domains. The proof relies on a estimate for the Stokes equations in convex domains.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis