{"title":"加权cscK指标(I):先验估计","authors":"Eleonora Di Nezza, Simon Jubert, Abdellah Lahdili","doi":"10.1016/j.jfa.2025.111148","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a compact Kähler manifold. In this paper we study the existence of constant weighted scalar curvature Kähler (weighted cscK) metrics on <em>X</em>. More precisely, we establish a priori <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>-estimates (<span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>) for the Kähler potential associated with these metrics, thereby extending a result due to Chen and Cheng in the classical cscK setting.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111148"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted cscK metrics (I): A priori estimates\",\"authors\":\"Eleonora Di Nezza, Simon Jubert, Abdellah Lahdili\",\"doi\":\"10.1016/j.jfa.2025.111148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>X</em> be a compact Kähler manifold. In this paper we study the existence of constant weighted scalar curvature Kähler (weighted cscK) metrics on <em>X</em>. More precisely, we establish a priori <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>-estimates (<span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>) for the Kähler potential associated with these metrics, thereby extending a result due to Chen and Cheng in the classical cscK setting.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 11\",\"pages\":\"Article 111148\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003301\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003301","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let X be a compact Kähler manifold. In this paper we study the existence of constant weighted scalar curvature Kähler (weighted cscK) metrics on X. More precisely, we establish a priori -estimates () for the Kähler potential associated with these metrics, thereby extending a result due to Chen and Cheng in the classical cscK setting.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis