Sobolev不等式及其在非交换欧几里德空间上的非线性偏微分方程中的应用

IF 1.6 2区 数学 Q1 MATHEMATICS
Michael Ruzhansky , Serikbol Shaimardan , Kanat Tulenov
{"title":"Sobolev不等式及其在非交换欧几里德空间上的非线性偏微分方程中的应用","authors":"Michael Ruzhansky ,&nbsp;Serikbol Shaimardan ,&nbsp;Kanat Tulenov","doi":"10.1016/j.jfa.2025.111143","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study the Sobolev inequality on noncommutative Euclidean spaces. As a simple consequence, we obtain the Gagliardo–Nirenberg type inequality and as its application we show global well-posedness of nonlinear PDEs in the noncommutative Euclidean space. Moreover, we show that the logarithmic Sobolev inequality is equivalent to the Nash inequality for possibly different constants in this noncommutative setting by completing the list in noncommutative Varopoulos's theorem in <span><span>[54]</span></span>. Finally, we present a direct application of the Nash inequality to compute the time decay for solutions of the heat equation in the noncommutative setting.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111143"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sobolev inequality and its applications to nonlinear PDE on noncommutative Euclidean spaces\",\"authors\":\"Michael Ruzhansky ,&nbsp;Serikbol Shaimardan ,&nbsp;Kanat Tulenov\",\"doi\":\"10.1016/j.jfa.2025.111143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we study the Sobolev inequality on noncommutative Euclidean spaces. As a simple consequence, we obtain the Gagliardo–Nirenberg type inequality and as its application we show global well-posedness of nonlinear PDEs in the noncommutative Euclidean space. Moreover, we show that the logarithmic Sobolev inequality is equivalent to the Nash inequality for possibly different constants in this noncommutative setting by completing the list in noncommutative Varopoulos's theorem in <span><span>[54]</span></span>. Finally, we present a direct application of the Nash inequality to compute the time decay for solutions of the heat equation in the noncommutative setting.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 11\",\"pages\":\"Article 111143\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003258\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003258","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非交换欧几里得空间上的Sobolev不等式。作为一个简单的结果,我们得到了Gagliardo-Nirenberg型不等式,并作为它的应用,证明了非线性偏微分方程在非交换欧几里得空间中的全局适定性。此外,我们通过补全[54]中非交换Varopoulos定理中的列表,证明了对数Sobolev不等式等价于非交换条件下可能不同常数的Nash不等式。最后,我们给出了纳什不等式在非交换条件下计算热方程解的时间衰减的直接应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sobolev inequality and its applications to nonlinear PDE on noncommutative Euclidean spaces
In this work, we study the Sobolev inequality on noncommutative Euclidean spaces. As a simple consequence, we obtain the Gagliardo–Nirenberg type inequality and as its application we show global well-posedness of nonlinear PDEs in the noncommutative Euclidean space. Moreover, we show that the logarithmic Sobolev inequality is equivalent to the Nash inequality for possibly different constants in this noncommutative setting by completing the list in noncommutative Varopoulos's theorem in [54]. Finally, we present a direct application of the Nash inequality to compute the time decay for solutions of the heat equation in the noncommutative setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信