穿孔域上流形值Sobolev映射扩展的存在性

IF 1.6 2区 数学 Q1 MATHEMATICS
Chiara Gavioli , Leon Happ , Valerio Pagliari
{"title":"穿孔域上流形值Sobolev映射扩展的存在性","authors":"Chiara Gavioli ,&nbsp;Leon Happ ,&nbsp;Valerio Pagliari","doi":"10.1016/j.jfa.2025.111142","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by manifold-constrained homogenization problems, we construct suitable extensions for Sobolev functions defined on a perforated domain and taking values in a compact, connected <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-manifold without boundary. The proof combines a by now classical extension result for the unconstrained case with a retraction argument that heavily relies on the topological properties of the manifold. With the ultimate goal of providing necessary conditions for the existence of extensions for Sobolev maps between manifolds, we additionally investigate the relationship between this problem and the surjectivity of the trace operator for such functions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111142"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of extensions for manifold-valued Sobolev maps on perforated domains\",\"authors\":\"Chiara Gavioli ,&nbsp;Leon Happ ,&nbsp;Valerio Pagliari\",\"doi\":\"10.1016/j.jfa.2025.111142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by manifold-constrained homogenization problems, we construct suitable extensions for Sobolev functions defined on a perforated domain and taking values in a compact, connected <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-manifold without boundary. The proof combines a by now classical extension result for the unconstrained case with a retraction argument that heavily relies on the topological properties of the manifold. With the ultimate goal of providing necessary conditions for the existence of extensions for Sobolev maps between manifolds, we additionally investigate the relationship between this problem and the surjectivity of the trace operator for such functions.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 11\",\"pages\":\"Article 111142\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003246\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003246","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在流形约束齐次化问题的激励下,我们构造了定义在穿孔区域上的Sobolev函数的适当扩展,并在无边界的紧致连通c2流形上取值。该证明结合了无约束情况下的经典扩展结果和严重依赖于流形拓扑性质的缩回论证。为了提供流形间Sobolev映射扩展存在的必要条件,我们进一步研究了该问题与此类函数的迹算子的满射性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of extensions for manifold-valued Sobolev maps on perforated domains
Motivated by manifold-constrained homogenization problems, we construct suitable extensions for Sobolev functions defined on a perforated domain and taking values in a compact, connected C2-manifold without boundary. The proof combines a by now classical extension result for the unconstrained case with a retraction argument that heavily relies on the topological properties of the manifold. With the ultimate goal of providing necessary conditions for the existence of extensions for Sobolev maps between manifolds, we additionally investigate the relationship between this problem and the surjectivity of the trace operator for such functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信