{"title":"Regular Lagrangian flow for wavelike vector fields and the Vlasov-Maxwell system","authors":"Henrique Borrin","doi":"10.1016/j.jde.2024.09.051","DOIUrl":"10.1016/j.jde.2024.09.051","url":null,"abstract":"<div><div>In this paper, we study the Lagrangian structure of Vlasov-Maxwell system, that is, by using a suitable notion of flow, we prove that if the densities <span><math><mi>ρ</mi><mo>,</mo><mspace></mspace><mi>j</mi></math></span> are integrable in spacetime, and the charge acceleration <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>j</mi></math></span> and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mi>j</mi></math></span> (or <span><math><mi>∇</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>j</mi></math></span>) are integrable functions in spacetime, then renormalized and distributional solutions of the system are the transport of the initial condition by its flow. We study more general vector fields, with wavelike structure in the sense that it has finite speed of propagation, generalizing the vector fields studied in <span><span>[6]</span></span>. The result is a extension of those obtained by Ambrosio, Colombo, and Figalli <span><span>[2]</span></span> for the Vlasov-Poisson system, and by the author and Marcon <span><span>[5]</span></span> for relativistic Vlasov-systems with quasistatic approximations of Maxwell's equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a class of nonautonomous quasilinear systems with general time-gradually-degenerate damping","authors":"Richard De la cruz , Wladimir Neves","doi":"10.1016/j.jde.2024.09.049","DOIUrl":"10.1016/j.jde.2024.09.049","url":null,"abstract":"<div><div>In this paper, we study two systems with a time-variable coefficient and general time-gradually-degenerate damping. More explicitly, we construct the Riemann solutions to the time-variable coefficient Zeldovich approximation and time-variable coefficient pressureless gas systems both with general time-gradually-degenerate damping. Applying the method of similar variables and nonlinear viscosity, we obtain classical Riemann solutions and delta shock wave solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minbo Yang , Jefferson Abrantes , Pedro Ubilla , Jiazheng Zhou
{"title":"Global multiplicity of positive solutions for a sublinear elliptic equation in RN","authors":"Minbo Yang , Jefferson Abrantes , Pedro Ubilla , Jiazheng Zhou","doi":"10.1016/j.jde.2024.09.052","DOIUrl":"10.1016/j.jde.2024.09.052","url":null,"abstract":"<div><div>We establish global multiplicity of positive solutions (existence and nonexistence theory) for the following problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> is a parameter, <span><math><mn>0</mn><mo>≤</mo><mi>h</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> and <em>f</em> is a sublinear nonlinearity at ∞. In order to obtain our results we use a combination of the sub- super solution method and variational techniques. For instance, we need to implement a relevant result of type <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> versus <em>X</em> local minimizer for some appropriate space <em>X</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A wave-breaking result for azimuthally varying water flows in cylindrical coordinates","authors":"Calin I. Martin","doi":"10.1016/j.jde.2024.09.048","DOIUrl":"10.1016/j.jde.2024.09.048","url":null,"abstract":"<div><div>We address here a question of fundamental importance in the analysis of nonlinear partial differential equations: when does a solution to a nonlinear partial differential equation develop singularities and what is the nature of those singularities? The particular type of singularity that we attend to here is wave breaking which is defined as the situation when the wave remains bounded up to the maximal existence time at which its slope becomes infinite. More specifically, our wave breaking result concerns the geophysical nonlinear water wave problem for an inviscid, incompressible, homogeneous fluid, written in cylindrical coordinates that are fixed at a point on the rotating Earth, together with the free surface and rigid bottom boundary conditions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of additional resource and degeneracy on the dynamics for a diffusive predator-prey system","authors":"Yunfeng Jia , Jingjing Wang , Yi Li","doi":"10.1016/j.jde.2024.09.045","DOIUrl":"10.1016/j.jde.2024.09.045","url":null,"abstract":"<div><div>A predator-prey system with Holling-II functional response in the presence of additional food resource and degeneracy is proposed in this paper. The main objective is to show the effects of additional food resource and degeneracy on the dynamics for system. We mainly obtain that there exist two critical values induced by degeneracy and improved functional response respectively, such that the system permits positive solutions. Additionally, we also show that both providing additional resource to predator with high quantity or quality, and introducing degeneracy effect into system have positive impacts in improving the amount of predator, which is indeed an environmentally-friendly strategy in preserving biodiversity.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-uniqueness in law of transport-diffusion equation forced by random noise","authors":"Ujjwal Koley , Kazuo Yamazaki","doi":"10.1016/j.jde.2024.09.046","DOIUrl":"10.1016/j.jde.2024.09.046","url":null,"abstract":"<div><div>We consider a transport-diffusion equation forced by random noise of three types: additive, linear multiplicative in Itô's interpretation, and transport in Stratonovich's interpretation. Via convex integration modified to probabilistic setting, we prove existence of a divergence-free vector field with spatial regularity in Sobolev space and corresponding solution to a transport-diffusion equation with spatial regularity in Lebesgue space, and consequently non-uniqueness in law at the level of probabilistically strong solutions globally in time.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sobolev instability in the cubic NLS equation with convolution potentials on irrational tori","authors":"Filippo Giuliani","doi":"10.1016/j.jde.2024.09.044","DOIUrl":"10.1016/j.jde.2024.09.044","url":null,"abstract":"<div><div>In this paper we prove the existence of solutions to the cubic NLS equation with convolution potentials on two dimensional irrational tori undergoing an arbitrarily large growth of Sobolev norms as time evolves. Our results apply also to the case of square (and rational) tori. We weaken the regularity assumptions on the convolution potentials, required in a previous work by Guardia (2014) <span><span>[11]</span></span> for the square case, to obtain the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-instability (<span><math><mi>s</mi><mo>></mo><mn>1</mn></math></span>) of the elliptic equilibrium <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span>. We also provide the existence of solutions <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> with arbitrarily small <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm which achieve a prescribed growth, say <span><math><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>≥</mo><mi>K</mi><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span>, <span><math><mi>K</mi><mo>≫</mo><mn>1</mn></math></span>, within a time <em>T</em> satisfying polynomial estimates, namely <span><math><mn>0</mn><mo><</mo><mi>T</mi><mo><</mo><msup><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow></msup></math></span> for some <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The central limit theorems for integrable Hamiltonian systems perturbed by white noise","authors":"Chen Wang , Yong Li","doi":"10.1016/j.jde.2024.09.047","DOIUrl":"10.1016/j.jde.2024.09.047","url":null,"abstract":"<div><div>In this paper, we consider the dynamics of integrable stochastic Hamiltonian systems. Utilizing the Nagaev-Guivarc'h method, we obtain several generalized results of the central limit theorem. Making use of this technique and the Birkhoff ergodic theorem, we prove that the invariant tori persist under stochastic perturbations. Moreover, they asymptotically follow a Gaussian distribution, which gives a positive answer to the stability of integrable stochastic Hamiltonian systems over time. Our results hold true for both Gaussian and non-Gaussian noises, and their intensities can be not small.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Borel summability of formal solutions of certain higher-order linear ordinary differential equations","authors":"Gergő Nemes","doi":"10.1016/j.jde.2024.09.041","DOIUrl":"10.1016/j.jde.2024.09.041","url":null,"abstract":"<div><div>We consider a class of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-order linear ordinary differential equations with a large parameter <em>u</em>. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of <em>u</em>. We demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter <em>u</em> in large, unbounded domains of the independent variable. We establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, we show that the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to an <span><math><msup><mrow><mi>n</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span>-order Airy-type equation.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundedness for the chemotaxis system with logistic growth","authors":"Qian Zhang , Yonghong Wu , Peiguang Wang","doi":"10.1016/j.jde.2024.09.040","DOIUrl":"10.1016/j.jde.2024.09.040","url":null,"abstract":"<div><div>In this paper, we consider a mathematical model motivated by the studies of coral broadcast spawning<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>n</mi><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>Δ</mi><mi>n</mi></mtd><mtd><mo>=</mo><mo>−</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>∇</mi><mi>c</mi><mo>)</mo><mo>+</mo><mi>n</mi><mo>−</mo><mi>ϵ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msup></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>c</mi><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>−</mo><mi>Δ</mi><mi>c</mi></mtd><mtd><mo>=</mo><mo>−</mo><mi>c</mi><mo>+</mo><mi>n</mi></mtd></mtr></mtable></mrow><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span>, and <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>. We establish global-in-time well-posedness and boundedness of the solution to the Cauchy problem of this system by developing local-in-space estimates. The crux point of our proof depends intensely on localization in the space of solutions induced by “local effect” of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>-norm.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}