Brandon Carhuas-Torre , Ricardo Castillo , Kerven Cea , Ricardo Freire , Alex Lira , Miguel Loayza
{"title":"具有一般源和一些涉及退化系数扩展的耦合抛物型系统的整体存在性结果","authors":"Brandon Carhuas-Torre , Ricardo Castillo , Kerven Cea , Ricardo Freire , Alex Lira , Miguel Loayza","doi":"10.1016/j.jde.2025.113765","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents optimal conditions for the existence of global solutions for the coupled parabolic system: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>=</mo><mi>l</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></math></span> with the Dirichlet boundary conditions. Here, <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a bounded or unbounded domain, the initial data belong to <span><math><msup><mrow><mo>[</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and the functions <span><math><mi>f</mi><mo>,</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>l</mi><mo>∈</mo><mi>C</mi><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. We also study the coupled parabolic system with degenerate coefficients: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>div</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>div</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>=</mo><mi>l</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, where <em>ω</em> belong to the class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of Muckenhoupt functions and may exhibit singularities along the line <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. This problem is related to the fractional Laplacian through the Caffarelli-Silvestre extension given in <span><span>[2]</span></span>. In addition, critical Fujita-type exponents are derived for both systems.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113765"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence results for coupled parabolic systems with general sources and some extensions involving degenerate coefficients\",\"authors\":\"Brandon Carhuas-Torre , Ricardo Castillo , Kerven Cea , Ricardo Freire , Alex Lira , Miguel Loayza\",\"doi\":\"10.1016/j.jde.2025.113765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents optimal conditions for the existence of global solutions for the coupled parabolic system: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>=</mo><mi>l</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></math></span> with the Dirichlet boundary conditions. Here, <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a bounded or unbounded domain, the initial data belong to <span><math><msup><mrow><mo>[</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and the functions <span><math><mi>f</mi><mo>,</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>l</mi><mo>∈</mo><mi>C</mi><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. We also study the coupled parabolic system with degenerate coefficients: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>div</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>div</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>=</mo><mi>l</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, where <em>ω</em> belong to the class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of Muckenhoupt functions and may exhibit singularities along the line <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. This problem is related to the fractional Laplacian through the Caffarelli-Silvestre extension given in <span><span>[2]</span></span>. In addition, critical Fujita-type exponents are derived for both systems.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113765\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007922\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007922","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global existence results for coupled parabolic systems with general sources and some extensions involving degenerate coefficients
This work presents optimal conditions for the existence of global solutions for the coupled parabolic system: and in with the Dirichlet boundary conditions. Here, is a bounded or unbounded domain, the initial data belong to , and the functions . We also study the coupled parabolic system with degenerate coefficients: and in , where ω belong to the class of Muckenhoupt functions and may exhibit singularities along the line . This problem is related to the fractional Laplacian through the Caffarelli-Silvestre extension given in [2]. In addition, critical Fujita-type exponents are derived for both systems.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics