Gleiciane S. Aragão , José M. Arrieta , Simone M. Bruschi
{"title":"Continuity of attractors of parabolic equations with nonlinear boundary conditions and rapidly varying boundaries. The case of a Lipschitz deformation","authors":"Gleiciane S. Aragão , José M. Arrieta , Simone M. Bruschi","doi":"10.1016/j.jde.2025.02.041","DOIUrl":"10.1016/j.jde.2025.02.041","url":null,"abstract":"<div><div>In this paper we obtain the continuity of attractors for nonlinear parabolic equations with nonlinear boundary conditions when the boundary of the domain varies rapidly as a parameter <em>ϵ</em> goes to zero. We consider the case where the boundary of the domain presents a highly oscillatory behavior as the parameter <em>ϵ</em> goes to zero. For the case where we have a Lipschitz deformation of the boundary with the Lipschitz constant uniformly bounded in <em>ϵ</em> but the boundaries do not approach in a Lipschitz sense, the solutions of these equations converge in certain sense to the solution of a limit parabolic equation of the same type but where the boundary condition has a factor that captures the oscillations of the boundary. To address this problem, it is necessary to consider the notion of convergence of functions defined in varying domains and the convergence of a family of operators defined in different Banach spaces. Moreover, since we consider problems with nonlinear boundary conditions, it is necessary to extend these concepts to the case of spaces with negative exponents and to operators defined between these spaces.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 460-502"},"PeriodicalIF":2.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recovering initial states in semilinear parabolic problems from time-averages","authors":"Lina Sophie Schmitz, Christoph Walker","doi":"10.1016/j.jde.2025.02.049","DOIUrl":"10.1016/j.jde.2025.02.049","url":null,"abstract":"<div><div>Well-posedness of certain semilinear parabolic problems with nonlocal initial conditions is shown in time-weighted spaces. The result is applied to recover the initial states in semilinear parabolic problems with nonlinearities of superlinear behavior near zero from small time-averages over arbitrary time periods.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 503-528"},"PeriodicalIF":2.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polyhedral entire solutions in reaction-diffusion equations","authors":"Masaharu Taniguchi","doi":"10.1016/j.jde.2025.02.034","DOIUrl":"10.1016/j.jde.2025.02.034","url":null,"abstract":"<div><div>This paper studies polyhedral entire solutions to a bistable reaction-diffusion equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We consider a pyramidal traveling front solution to the same equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. As the speed goes to infinity, its projection converges to an <em>n</em>-dimensional polyhedral entire solution. Conversely, as the time goes to −∞, an <em>n</em>-dimensional polyhedral entire solution gives <em>n</em>-dimensional pyramidal traveling front solutions. The result in this paper suggests a correlation between traveling front solutions and entire solutions in general reaction-diffusion equations or systems.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 529-565"},"PeriodicalIF":2.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic boundary flux-driven shallow waters: Insights from a dissipative-dispersive system","authors":"Neng Zhu , Kun Zhao","doi":"10.1016/j.jde.2025.02.055","DOIUrl":"10.1016/j.jde.2025.02.055","url":null,"abstract":"<div><div>This paper is concerned with a shallow water system under dynamic boundary conditions:<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mo>(</mo><mi>u</mi><mi>w</mi><mo>)</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><mi>ϵ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>w</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><mi>μ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>α</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>w</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>w</mi><mo>(</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>.</mo></math></span></span></span> By constructing suitable relative entropy functionals, it is shown that under certain conditions on <span><math><mi>α</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><mi>β</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, classical solutions with potentially large energy exist globally in time, and the solutions converge to the equilibria determined by the initial and boundary conditions. The results hold for all values of <span><math><mi>m</mi><mo>⩾</mo><mn>1</mn></math></span> when <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span>, and for <span><math><mi>m</mi><mo>⩾<","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 566-611"},"PeriodicalIF":2.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nondegeneracy of positive solutions for a biharmonic Hartree equation and its application","authors":"Minbo Yang , Weiwei Ye , Xinyun Zhang","doi":"10.1016/j.jde.2025.02.024","DOIUrl":"10.1016/j.jde.2025.02.024","url":null,"abstract":"<div><div>We study the nondegeneracy of positive solutions of the following biharmonic Hartree equation<span><span><span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi><mo>−</mo><mi>α</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>4</mn></mrow></mfrac></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>5</mn></math></span> and <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>N</mi></math></span>. Our method relies on the spherical harmonic decomposition and the Funk-Heck formula of the spherical harmonic functions. Then as an application, by applying a finite dimension reduction and local Pohožaev identity, we can construct multi-bubble solutions for the following equation with potential<span><span><span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mo>|</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>|</mo><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>)</mo><mi>u</mi><mo>=</mo><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>9</mn></math></span>, <span><math><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> and <span><math><mi>V</mi><mo>(</mo><mo>|</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>|</mo><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>)</mo></math></span> is a bounded and nonnegative function. We prove that the existence result is restricted to the range <span><math><mn>6</mn><mo>−</mo><mfrac><mrow><mn>12</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>4</mn></mrow></mfrac><mo>≤</mo><mi>α</mi><mo><</mo><mi>N</mi></math></span> which shows the influence of the order of Riesz potential.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"428 ","pages":"Pages 796-849"},"PeriodicalIF":2.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143444437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A uniform C1 connecting lemma for singular flows","authors":"Ming Li , Xingzhong Liu","doi":"10.1016/j.jde.2025.02.043","DOIUrl":"10.1016/j.jde.2025.02.043","url":null,"abstract":"<div><div>We extend the uniform <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> connecting lemma <span><span>[28]</span></span> to singular flows. The perturbation parameters are valid in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-neighborhood of the given vector field. Moreover, they are also uniform on the points except singularities and some periodic ones with small period.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 247-261"},"PeriodicalIF":2.4,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gradient estimate for solutions to Δbu = 0 and Δbu+aulnu+bu=0 on pseudohermitian manifold","authors":"Shitong Niu, Jun Sun","doi":"10.1016/j.jde.2025.02.045","DOIUrl":"10.1016/j.jde.2025.02.045","url":null,"abstract":"<div><div>In this paper, we will establish fundamental <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> estimate for solutions to <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>b</mi></mrow></msub><mi>u</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> estimates for solutions to a class of nonlinear elliptic equations of the form <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>b</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>a</mi><mi>u</mi><mi>ln</mi><mo></mo><mi>u</mi><mo>+</mo><mi>b</mi><mi>u</mi><mo>=</mo><mn>0</mn></math></span> on pseudohermitian manifold. The proof consists of combining the Nash-Moser iteration and Saloff-Coste type Sobolev inequalities.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 262-282"},"PeriodicalIF":2.4,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143436943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New type of solutions for the critical Lane-Emden system","authors":"Wenjing Chen, Xiaomeng Huang","doi":"10.1016/j.jde.2025.02.046","DOIUrl":"10.1016/j.jde.2025.02.046","url":null,"abstract":"<div><div>In this paper, we consider the critical Lane-Emden system<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd></mtr><mtr><mtd><mi>u</mi><mo>,</mo><mi>v</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>5</mn></math></span>, <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> with <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></math></span> are positive radial potentials. Under suitable conditions on <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></math></span>, we construct a new family of solutions to this system, which are centred at points lying on the top and the bottom circles of a cylinder.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 318-391"},"PeriodicalIF":2.4,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bogdan-Vasile Matioc , Luigi Roberti , Christoph Walker
{"title":"Quasilinear parabolic equations with superlinear nonlinearities in critical spaces","authors":"Bogdan-Vasile Matioc , Luigi Roberti , Christoph Walker","doi":"10.1016/j.jde.2025.02.039","DOIUrl":"10.1016/j.jde.2025.02.039","url":null,"abstract":"<div><div>Well-posedness in time-weighted spaces for quasilinear (and semilinear) parabolic evolution equations <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> is established in a certain critical case of strict inclusion <span><math><mrow><mi>dom</mi></mrow><mo>(</mo><mi>f</mi><mo>)</mo><mo>⊊</mo><mrow><mi>dom</mi></mrow><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for the domains of the (superlinear) function <span><math><mi>u</mi><mo>↦</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> and the quasilinear part <span><math><mi>u</mi><mo>↦</mo><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span>. Based upon regularizing effects of parabolic equations, it is proven that the solution map generates a semiflow in a critical intermediate space. The applicability of the abstract results is demonstrated by several examples including a model for atmospheric flows and semilinear and quasilinear evolution equations with scaling invariance for which well-posedness in the critical scaling invariant intermediate spaces is shown.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 283-317"},"PeriodicalIF":2.4,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143436839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dispersive decay for the energy-critical nonlinear Schrödinger equation","authors":"Matthew Kowalski","doi":"10.1016/j.jde.2025.02.040","DOIUrl":"10.1016/j.jde.2025.02.040","url":null,"abstract":"<div><div>We prove pointwise-in-time dispersive decay for solutions to the energy-critical nonlinear Schrödinger equation in spatial dimensions <span><math><mi>d</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> for both the initial-value and final-state problems.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 392-426"},"PeriodicalIF":2.4,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143444637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}