机械系统随机扰动中的能量输运

IF 2.4 2区 数学 Q1 MATHEMATICS
Anna Maria Cherubini , Marian Gidea
{"title":"机械系统随机扰动中的能量输运","authors":"Anna Maria Cherubini ,&nbsp;Marian Gidea","doi":"10.1016/j.jde.2025.113619","DOIUrl":null,"url":null,"abstract":"<div><div>We describe a mechanism for transport of energy in a mechanical system consisting of a pendulum and a rotator subject to a random perturbation. The perturbation that we consider is the product of a Hamiltonian vector field and a scalar, continuous, stationary Gaussian process with Hölder continuous realizations, scaled by a smallness parameter. We show that for almost every realization of the stochastic process, there is a distinguished set of times for which there exists a random normally hyperbolic invariant manifold with associated stable and unstable manifolds that intersect transversally, for all sufficiently small values of the smallness parameter. We derive the existence of orbits along which the energy changes over time by an amount proportional to the smallness parameter. This result is related to the Arnold diffusion problem for Hamiltonian systems, which we treat here in the random setting.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"447 ","pages":"Article 113619"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy transport in random perturbations of mechanical systems\",\"authors\":\"Anna Maria Cherubini ,&nbsp;Marian Gidea\",\"doi\":\"10.1016/j.jde.2025.113619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We describe a mechanism for transport of energy in a mechanical system consisting of a pendulum and a rotator subject to a random perturbation. The perturbation that we consider is the product of a Hamiltonian vector field and a scalar, continuous, stationary Gaussian process with Hölder continuous realizations, scaled by a smallness parameter. We show that for almost every realization of the stochastic process, there is a distinguished set of times for which there exists a random normally hyperbolic invariant manifold with associated stable and unstable manifolds that intersect transversally, for all sufficiently small values of the smallness parameter. We derive the existence of orbits along which the energy changes over time by an amount proportional to the smallness parameter. This result is related to the Arnold diffusion problem for Hamiltonian systems, which we treat here in the random setting.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"447 \",\"pages\":\"Article 113619\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006461\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006461","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一个由钟摆和旋转器组成的受随机扰动的机械系统中的能量传递机制。我们所考虑的扰动是一个哈密顿向量场和一个具有Hölder连续实现的标量、连续、平稳高斯过程的乘积,用一个小参数进行缩放。我们证明,对于几乎每一个随机过程的实现,都存在一个特殊的时间集合,其中存在一个随机的通常双曲不变流形,其相关的稳定流形和不稳定流形横向相交,对于所有足够小的smallness参数值。我们推导出轨道的存在,沿着轨道能量随时间变化的量与小参数成正比。这个结果与哈密顿系统的阿诺德扩散问题有关,这里我们在随机设置中处理它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy transport in random perturbations of mechanical systems
We describe a mechanism for transport of energy in a mechanical system consisting of a pendulum and a rotator subject to a random perturbation. The perturbation that we consider is the product of a Hamiltonian vector field and a scalar, continuous, stationary Gaussian process with Hölder continuous realizations, scaled by a smallness parameter. We show that for almost every realization of the stochastic process, there is a distinguished set of times for which there exists a random normally hyperbolic invariant manifold with associated stable and unstable manifolds that intersect transversally, for all sufficiently small values of the smallness parameter. We derive the existence of orbits along which the energy changes over time by an amount proportional to the smallness parameter. This result is related to the Arnold diffusion problem for Hamiltonian systems, which we treat here in the random setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信