{"title":"全局多重性导致一个具有谱参数的Moore-Nehari型问题","authors":"Julián López-Gómez , Eduardo Muñoz-Hernández , Fabio Zanolin","doi":"10.1016/j.jde.2025.113628","DOIUrl":null,"url":null,"abstract":"<div><div>This paper analyzes the structure of the set of positive solutions of <span><span>(1.1)</span></span>, where <span><math><mi>a</mi><mo>≡</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> is the piece-wise constant function defined in <span><span>(1.3)</span></span> for some <span><math><mi>h</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. In our analysis, <em>λ</em> is regarded as a bifurcation parameter, whereas <em>h</em> is viewed as a deformation parameter between the autonomous case when <span><math><mi>a</mi><mo>=</mo><mn>1</mn></math></span> and the linear case when <span><math><mi>a</mi><mo>=</mo><mn>0</mn></math></span>. In this paper, besides establishing some of the multiplicity results suggested by the numerical experiments of <span><span>[2]</span></span>, we have analyzed the asymptotic behavior of the positive solutions of <span><span>(1.1)</span></span> as <span><math><mi>h</mi><mo>↑</mo><mn>1</mn></math></span>, when the shadow system of <span><span>(1.1)</span></span> is the linear equation <span><math><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span>. This is the first paper where such a problem has been addressed. Numerics is of no help in analyzing this singular perturbation problem because the positive solutions blow-up point-wise in <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> as <span><math><mi>h</mi><mo>↑</mo><mn>1</mn></math></span> if <span><math><mi>λ</mi><mo><</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"447 ","pages":"Article 113628"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global multiplicity results in a Moore–Nehari type problem with a spectral parameter\",\"authors\":\"Julián López-Gómez , Eduardo Muñoz-Hernández , Fabio Zanolin\",\"doi\":\"10.1016/j.jde.2025.113628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper analyzes the structure of the set of positive solutions of <span><span>(1.1)</span></span>, where <span><math><mi>a</mi><mo>≡</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> is the piece-wise constant function defined in <span><span>(1.3)</span></span> for some <span><math><mi>h</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. In our analysis, <em>λ</em> is regarded as a bifurcation parameter, whereas <em>h</em> is viewed as a deformation parameter between the autonomous case when <span><math><mi>a</mi><mo>=</mo><mn>1</mn></math></span> and the linear case when <span><math><mi>a</mi><mo>=</mo><mn>0</mn></math></span>. In this paper, besides establishing some of the multiplicity results suggested by the numerical experiments of <span><span>[2]</span></span>, we have analyzed the asymptotic behavior of the positive solutions of <span><span>(1.1)</span></span> as <span><math><mi>h</mi><mo>↑</mo><mn>1</mn></math></span>, when the shadow system of <span><span>(1.1)</span></span> is the linear equation <span><math><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span>. This is the first paper where such a problem has been addressed. Numerics is of no help in analyzing this singular perturbation problem because the positive solutions blow-up point-wise in <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> as <span><math><mi>h</mi><mo>↑</mo><mn>1</mn></math></span> if <span><math><mi>λ</mi><mo><</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"447 \",\"pages\":\"Article 113628\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006552\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006552","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global multiplicity results in a Moore–Nehari type problem with a spectral parameter
This paper analyzes the structure of the set of positive solutions of (1.1), where is the piece-wise constant function defined in (1.3) for some . In our analysis, λ is regarded as a bifurcation parameter, whereas h is viewed as a deformation parameter between the autonomous case when and the linear case when . In this paper, besides establishing some of the multiplicity results suggested by the numerical experiments of [2], we have analyzed the asymptotic behavior of the positive solutions of (1.1) as , when the shadow system of (1.1) is the linear equation . This is the first paper where such a problem has been addressed. Numerics is of no help in analyzing this singular perturbation problem because the positive solutions blow-up point-wise in as if .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics