Global L∞ entropy solutions to system of polytropic gas dynamics with a source

IF 2.4 2区 数学 Q1 MATHEMATICS
J.J Chen , Q.Q. Fang , C. Klingenberg , Y.-G. Lu , X.X Tao , N. Tsuge
{"title":"Global L∞ entropy solutions to system of polytropic gas dynamics with a source","authors":"J.J Chen ,&nbsp;Q.Q. Fang ,&nbsp;C. Klingenberg ,&nbsp;Y.-G. Lu ,&nbsp;X.X Tao ,&nbsp;N. Tsuge","doi":"10.1016/j.jde.2025.113630","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the global <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> entropy solutions for the Cauchy problem of the polytropic gas dynamics system in a general nozzle with friction. First, under bounded conditions on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the cross-sectional area function <span><math><mi>A</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and the friction function <span><math><mi>α</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, we apply the flux-approximation technique coupled with the classical viscosity method to obtain the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> estimates of the viscosity-flux approximate solutions for any exponent <span><math><mi>γ</mi><mo>≥</mo><mn>1</mn></math></span>; Second, by using the compactness framework from the compensated compactness theory, we prove the convergence of the viscosity-flux approximate solutions and obtain the global existence of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> entropy solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"447 ","pages":"Article 113630"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006576","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the global L entropy solutions for the Cauchy problem of the polytropic gas dynamics system in a general nozzle with friction. First, under bounded conditions on the L1 norm of the cross-sectional area function A(x) and the friction function α(x), we apply the flux-approximation technique coupled with the classical viscosity method to obtain the L estimates of the viscosity-flux approximate solutions for any exponent γ1; Second, by using the compactness framework from the compensated compactness theory, we prove the convergence of the viscosity-flux approximate solutions and obtain the global existence of the L entropy solutions.
带源多向气体动力学系统的全局L∞熵解
本文研究了具有摩擦力的通用喷管中多向气体动力学系统Cauchy问题的全局L∞熵解。首先,在横截面积函数A(x)和摩擦函数α(x)的L1范数有界的条件下,将流量逼近技术与经典粘度法相结合,得到了任意指数γ≥1时粘度-流量近似解的L∞估计;其次,利用补偿紧性理论中的紧性框架,证明了粘-通量近似解的收敛性,得到了L∞熵解的全局存在性;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信