Journal of Differential Equations最新文献

筛选
英文 中文
Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth 临界生长p-拉普拉斯Schrödinger-Poisson体系的规定质量解
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-27 DOI: 10.1016/j.jde.2025.113570
Kai Liu , Xiaoming He , Vicenţiu D. Rădulescu
{"title":"Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth","authors":"Kai Liu , Xiaoming He , Vicenţiu D. Rădulescu","doi":"10.1016/j.jde.2025.113570","DOIUrl":"10.1016/j.jde.2025.113570","url":null,"abstract":"<div><div>In this paper, we focus on the existence and multiplicity of solutions for the <em>p</em>-Laplacian Schrödinger-Poisson system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>γ</mi><mi>ϕ</mi><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd><mtd><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></mtd><mtd><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> with a prescribed mass given by<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></math></span></span></span> in the Sobolev critical case, where, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>3</mn><mo>,</mo><mi>a</mi><mo>></mo><mn>0</mn></math></span>, and <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span> are parameters, <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>3</mn><mi>p</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>p</mi></mrow></mfrac></math></span> is the Sobolev critical exponent, and <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-subcritical perturbation <span><math><mi>μ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></math></span>, with <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mi>p</mi><mo>,</mo><mi>p</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span>, and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness ","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113570"},"PeriodicalIF":2.4,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144490447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat-source type atmospheric nonlinear flow patterns in zonal cloud bands 纬向云带的热源型大气非线性流动模式
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-27 DOI: 10.1016/j.jde.2025.113589
C.I. Martin
{"title":"Heat-source type atmospheric nonlinear flow patterns in zonal cloud bands","authors":"C.I. Martin","doi":"10.1016/j.jde.2025.113589","DOIUrl":"10.1016/j.jde.2025.113589","url":null,"abstract":"<div><div>We present a family of exact solutions to a set of recently derived nonlinear equations governing at leading order the dynamics of flows in zonal cloud bands that resemble those on Jupiter. These solutions are radial in the horizontal variables, present density and temperature that decrease with height, a pressure function that decreases in the radial direction, and allow heat flowing out into the environment: these are features that are also observed in the Jupiter's Red Spot. Using a WKB analysis we show that certain exact solutions are stable under a specific choice of the density distribution.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113589"},"PeriodicalIF":2.4,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144490405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp lifespan estimates for semilinear fractional evolution equations with critical nonlinearity 具有临界非线性的半线性分数进化方程的尖锐寿命估计
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-27 DOI: 10.1016/j.jde.2025.113568
Wenhui Chen , Giovanni Girardi
{"title":"Sharp lifespan estimates for semilinear fractional evolution equations with critical nonlinearity","authors":"Wenhui Chen ,&nbsp;Giovanni Girardi","doi":"10.1016/j.jde.2025.113568","DOIUrl":"10.1016/j.jde.2025.113568","url":null,"abstract":"<div><div>In this paper we consider semilinear wave equation and semilinear second order <em>σ</em>-evolution equations with different (effective or non-effective) damping mechanisms driven by fractional Laplace operators; in particular, the nonlinear term is the product of a power nonlinearity <span><math><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> with the critical exponent <span><math><mi>p</mi><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and a modulus of continuity <span><math><mi>μ</mi><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>)</mo></math></span>. We derive a critical condition on the nonlinearity by proving a global in time existence result under the Dini condition on <em>μ</em> and a blow-up result when <em>μ</em> does not satisfy the Dini condition. Especially, in this latter case we determine new sharp estimates for the lifespan of local solutions, obtaining coincident upper and lower bounds of the lifespan. In particular, we derive a new sharp estimate for the wave equation with structural damping and classical power nonlinearity <span><math><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> in the critical case <span><math><mi>p</mi><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, not yet determined in previous literature. The proof of the blow-up results and the upper bound estimates of the lifespan require the introduction of new test functions which allows to overcome some new difficulties due to the presence of both non-local differential operators and general nonlinearities.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113568"},"PeriodicalIF":2.4,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144491147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability and large-time behavior for Euler-like equations 类欧拉方程的稳定性和大时间行为
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-27 DOI: 10.1016/j.jde.2025.113578
Jiahong Wu , Xiaojing Xu , Yueyuan Zhong , Ning Zhu
{"title":"Stability and large-time behavior for Euler-like equations","authors":"Jiahong Wu ,&nbsp;Xiaojing Xu ,&nbsp;Yueyuan Zhong ,&nbsp;Ning Zhu","doi":"10.1016/j.jde.2025.113578","DOIUrl":"10.1016/j.jde.2025.113578","url":null,"abstract":"<div><div>This paper intends to understand the long-time existence and stability of solutions to an Euler-like equation. An Euler-like equation is the 2D incompressible Euler equation with an extra singular integral operator (SIO) type term. In contrast to the 2D Euler equation, the vorticity to the 2D Euler-like equation is not known to be bounded due to the unboundedness of the SIO on the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>. As a consequence, classical Yudovich theory fails on the Euler-like equation. The global existence, regularity and stability problems on the Euler-like equation are generally open. This paper makes progress on an Euler-like equation arising in the study of several fluids. We establish a long-time existence and stability result. When the Sobolev size of the initial data is of order <em>ε</em>, the solution is shown to live on a time interval of the size <span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. When the initial data is restricted to a class with special symmetry, we obtain the global existence and nonlinear stability.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113578"},"PeriodicalIF":2.4,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144491342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularity of the 3D stochastic viscous Primitive Equations 三维随机粘性原始方程的正则性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-26 DOI: 10.1016/j.jde.2025.113579
Zhao Dong , Hao Xiong , Guoli Zhou
{"title":"Regularity of the 3D stochastic viscous Primitive Equations","authors":"Zhao Dong ,&nbsp;Hao Xiong ,&nbsp;Guoli Zhou","doi":"10.1016/j.jde.2025.113579","DOIUrl":"10.1016/j.jde.2025.113579","url":null,"abstract":"<div><div>Utilizing the method of hydrostatic decomposition, we obtain the smoothness property and uniform <em>a</em> <span><math><mi>p</mi><mi>r</mi><mi>i</mi><mi>o</mi><mi>r</mi><mi>i</mi></math></span> estimates for the strong solution to 3D stochastic Primitive Equations (PEs) of large-scale ocean and atmosphere dynamics with non-periodic condition. Consequently, we derive the existence of invariant measures and the smoothness of random attractor.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113579"},"PeriodicalIF":2.4,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144480526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global stability of traveling waves for Nagumo equations with degenerate diffusion 具有退化扩散的Nagumo方程行波的全局稳定性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-26 DOI: 10.1016/j.jde.2025.113587
Tianyuan Xu , Shanming Ji , Ming Mei , Jingxue Yin
{"title":"Global stability of traveling waves for Nagumo equations with degenerate diffusion","authors":"Tianyuan Xu ,&nbsp;Shanming Ji ,&nbsp;Ming Mei ,&nbsp;Jingxue Yin","doi":"10.1016/j.jde.2025.113587","DOIUrl":"10.1016/j.jde.2025.113587","url":null,"abstract":"<div><div>This paper is concerned with the global nonlinear stability with possibly large perturbations of the unique sharp / smooth traveling waves for the degenerate diffusion equations with Nagumo (bistable) reaction. Two technical issues arise in this study. One is the shortage of weak regularity of sharp traveling waves, the other difficulty is the non-absorbing initial-perturbation around the smooth traveling waves at the far field <span><math><mi>x</mi><mo>=</mo><mo>+</mo><mo>∞</mo></math></span>. For the sharp traveling wave case, we technically construct weak sub- and super-solutions with semi-compact supports via translation and scaling of the unique sharp traveling wave to characterize the motion of the steep moving edges and avoid the weak regularity of the solution near the steep edges. For the smooth traveling wave case, we artfully combine both the translation and scaling type sub- and super-solutions and the translation and superposition type sub- and super-solutions in a systematical manner.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113587"},"PeriodicalIF":2.4,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144490352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolated singularities of solutions of linear and semilinear elliptic equations with singular drifts 具有奇异漂移的线性和半线性椭圆方程解的孤立奇异性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-25 DOI: 10.1016/j.jde.2025.113574
Hyunseok Kim
{"title":"Isolated singularities of solutions of linear and semilinear elliptic equations with singular drifts","authors":"Hyunseok Kim","doi":"10.1016/j.jde.2025.113574","DOIUrl":"10.1016/j.jde.2025.113574","url":null,"abstract":"<div><div>We study isolated singularities of solutions of linear and semilinear elliptic equations in divergence form with singular drifts. First, extending a classical result for isolated singularities of harmonic functions, we establish a removable isolated singularity theorem for linear equations with drifts <strong>b</strong> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mtext>; </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> for some <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mi>n</mi></math></span>, where <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> is the dimension. Then this theorem is applied to prove removability theorems for isolated singularities of solutions of some semilinear equations with drifts in <span><math><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mtext>; </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. One novelty of our results is that the critical case <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mi>n</mi></math></span> is allowed for removable singularity theorems for both linear and semilinear equations. Moreover, our methods of proofs rely only on interior <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msup></math></span>-estimates for solutions on annuli and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>-estimates for their traces on spheres but not pointwise estimates like the maximum principle, which can be thus applied to linear and nonlinear systems.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113574"},"PeriodicalIF":2.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144471820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kato-Ponce inequality for fractional nonlocal parabolic operators 分数阶非局部抛物算子的Kato-Ponce不等式
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-25 DOI: 10.1016/j.jde.2025.113572
Meng Qu , Xinfeng Wu
{"title":"Kato-Ponce inequality for fractional nonlocal parabolic operators","authors":"Meng Qu ,&nbsp;Xinfeng Wu","doi":"10.1016/j.jde.2025.113572","DOIUrl":"10.1016/j.jde.2025.113572","url":null,"abstract":"<div><div>We establish Kato-Ponce inequality (or fractional Leibniz rule) for fractional nonlocal parabolic operators <span><math><msup><mrow><mo>(</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> of arbitrary order <span><math><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span> for a full range of Lebesgue indices including the endpoints, and determine the sharp range of <em>s</em>. We also prove a sharp Kato-Ponce commutator inequality for <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>. To achieve these results, we not only adapt the methods of Bourgain-Li <span><span>[11]</span></span>, Grafakos-Oh <span><span>[25]</span></span> and Oh-Wu <span><span>[50]</span></span> to the present parabolic setting, but build up sharp decay estimates for higher-order hyper-singular integrals of Nogin-Rubin <span><span>[48]</span></span> and Stinga-Torrea <span><span>[54]</span></span>, which are crucial for us to derive the sharp ranges of <em>s</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113572"},"PeriodicalIF":2.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144470604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport equations for Osgood velocity fields 奥斯古德速度场的输运方程
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-25 DOI: 10.1016/j.jde.2025.113566
U.S. Fjordholm, O. Mæhlen
{"title":"Transport equations for Osgood velocity fields","authors":"U.S. Fjordholm,&nbsp;O. Mæhlen","doi":"10.1016/j.jde.2025.113566","DOIUrl":"10.1016/j.jde.2025.113566","url":null,"abstract":"<div><div>We consider the transport equation with a velocity field satisfying the Osgood condition. The weak formulation is not meaningful in the usual Lebesgue sense, meaning that the usual DiPerna–Lions treatment of the problem is not applicable (in particular, the divergence of the velocity might be unbounded). Instead, we use Riemann–Stieltjes integration to interpret the weak formulation, leading to a well-posedness theory in regimes not covered by existing works. The most general results are for the one-dimensional problem, with generalisations to multiple dimensions in the particular case of log-Lipschitz velocities.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113566"},"PeriodicalIF":2.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144470603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low regularity results for degenerate Poisson problems 退化泊松问题的低正则性结果
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-06-25 DOI: 10.1016/j.jde.2025.113567
Marta Calanchi , Massimo Grossi
{"title":"Low regularity results for degenerate Poisson problems","authors":"Marta Calanchi ,&nbsp;Massimo Grossi","doi":"10.1016/j.jde.2025.113567","DOIUrl":"10.1016/j.jde.2025.113567","url":null,"abstract":"<div><div>In this paper we study the Poisson problem,<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mi>β</mi></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>f</mi></mtd><mtd><mrow><mi>in</mi></mrow><mspace></mspace><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><mrow><mi>on</mi></mrow><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span> is a smooth bounded domain, <em>f</em> is a continuous function, <span><math><mi>β</mi><mo>&lt;</mo><mn>1</mn></math></span>, and <span><math><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>d</mi><mi>i</mi><mi>s</mi><mi>t</mi><mo>(</mo><mi>x</mi><mo>,</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span>. We describe the behaviour of <em>u</em> near ∂Ω and discuss some of its regularity properties.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113567"},"PeriodicalIF":2.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144470605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信