随机晶格动力学转移核的内部控制

IF 2.3 2区 数学 Q1 MATHEMATICS
Amirali Hannani , Minh-Nhat Phung , Minh-Binh Tran , Emmanuel Trélat
{"title":"随机晶格动力学转移核的内部控制","authors":"Amirali Hannani ,&nbsp;Minh-Nhat Phung ,&nbsp;Minh-Binh Tran ,&nbsp;Emmanuel Trélat","doi":"10.1016/j.jde.2025.113798","DOIUrl":null,"url":null,"abstract":"<div><div>In <span><span>[4]</span></span>, we initiated the first study of control problems for kinetic equations arising from harmonic chains. Specifically, we developed impulsive and feedback control mechanisms for harmonic chains coupled with a point thermostat, effectively enabling control over the boundary conditions of the corresponding kinetic equations. However, the more intricate and fundamental challenge of internal control - namely, the design of control strategies that influence the collision operators within the kinetic framework - remained open.</div><div>In the present work, we address the internal control problem for stochastic lattice dynamics, with the objective of controlling the transition kernel of the limiting kinetic equation. A central innovation of our approach is the development of a novel geometric-combinatorial framework, which enables the systematic construction of control pathways within the microscopic dynamics. This methodology opens a new avenue for the internal control of kinetic equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113798"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal control of the transition kernel for stochastic lattice dynamics\",\"authors\":\"Amirali Hannani ,&nbsp;Minh-Nhat Phung ,&nbsp;Minh-Binh Tran ,&nbsp;Emmanuel Trélat\",\"doi\":\"10.1016/j.jde.2025.113798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In <span><span>[4]</span></span>, we initiated the first study of control problems for kinetic equations arising from harmonic chains. Specifically, we developed impulsive and feedback control mechanisms for harmonic chains coupled with a point thermostat, effectively enabling control over the boundary conditions of the corresponding kinetic equations. However, the more intricate and fundamental challenge of internal control - namely, the design of control strategies that influence the collision operators within the kinetic framework - remained open.</div><div>In the present work, we address the internal control problem for stochastic lattice dynamics, with the objective of controlling the transition kernel of the limiting kinetic equation. A central innovation of our approach is the development of a novel geometric-combinatorial framework, which enables the systematic construction of control pathways within the microscopic dynamics. This methodology opens a new avenue for the internal control of kinetic equations.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113798\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008253\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008253","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在2010年,我们首次研究了由谐波链引起的动力学方程的控制问题。具体来说,我们开发了谐波链的脉冲和反馈控制机制,并结合了一个点恒温器,有效地控制了相应动力学方程的边界条件。然而,内部控制的更复杂和基本的挑战-即,在动力学框架内影响碰撞算子的控制策略的设计-仍然是开放的。在本工作中,我们解决随机晶格动力学的内部控制问题,目的是控制极限动力学方程的转移核。我们方法的一个核心创新是开发了一种新的几何组合框架,它可以在微观动力学中系统地构建控制路径。该方法为动力学方程的内部控制开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal control of the transition kernel for stochastic lattice dynamics
In [4], we initiated the first study of control problems for kinetic equations arising from harmonic chains. Specifically, we developed impulsive and feedback control mechanisms for harmonic chains coupled with a point thermostat, effectively enabling control over the boundary conditions of the corresponding kinetic equations. However, the more intricate and fundamental challenge of internal control - namely, the design of control strategies that influence the collision operators within the kinetic framework - remained open.
In the present work, we address the internal control problem for stochastic lattice dynamics, with the objective of controlling the transition kernel of the limiting kinetic equation. A central innovation of our approach is the development of a novel geometric-combinatorial framework, which enables the systematic construction of control pathways within the microscopic dynamics. This methodology opens a new avenue for the internal control of kinetic equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信