Three-dimensional horseshoes near an unfolding of a Hopf-Hopf singularity

IF 2.3 2区 数学 Q1 MATHEMATICS
Santiago Ibáñez , Alexandre A. Rodrigues
{"title":"Three-dimensional horseshoes near an unfolding of a Hopf-Hopf singularity","authors":"Santiago Ibáñez ,&nbsp;Alexandre A. Rodrigues","doi":"10.1016/j.jde.2025.113778","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by a certain type of unfolding of a Hopf-Hopf singularity, we consider a one-parameter family <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>γ</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>–vector fields in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> whose flows exhibit a heteroclinic cycle associated to two periodic solutions and a bifocus, all of them hyperbolic. It is formally proved that combining rotation with a generic condition concerning the transverse intersection between the three-dimensional invariant manifolds of the periodic solutions, all sets are highly distorted by the first return map and hyperbolic three-dimensional horseshoes emerge, accumulating on the network. Infinitely many linked horseshoes prompt the coexistence of infinitely many saddle-type invariant sets for all values of <span><math><mi>γ</mi><mo>≳</mo><mn>0</mn></math></span> belonging to the heteroclinic class of the two hyperbolic periodic solutions. We apply the results to a particular unfolding of the Hopf-Hopf singularity, the so-called <em>Gaspard-type unfolding</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"452 ","pages":"Article 113778"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by a certain type of unfolding of a Hopf-Hopf singularity, we consider a one-parameter family (fγ)γ0 of C3–vector fields in R4 whose flows exhibit a heteroclinic cycle associated to two periodic solutions and a bifocus, all of them hyperbolic. It is formally proved that combining rotation with a generic condition concerning the transverse intersection between the three-dimensional invariant manifolds of the periodic solutions, all sets are highly distorted by the first return map and hyperbolic three-dimensional horseshoes emerge, accumulating on the network. Infinitely many linked horseshoes prompt the coexistence of infinitely many saddle-type invariant sets for all values of γ0 belonging to the heteroclinic class of the two hyperbolic periodic solutions. We apply the results to a particular unfolding of the Hopf-Hopf singularity, the so-called Gaspard-type unfolding.
Hopf-Hopf奇点展开附近的三维马蹄铁
基于Hopf-Hopf奇点的某种类型的展开,我们考虑R4中c3向量场的单参数族(fγ)γ≥0,其流表现出与两个周期解相关的异斜周期和双焦,它们都是双曲的。将旋转与周期解的三维不变流形横向相交的一般条件相结合,正式证明了所有集合都被第一返回映射高度扭曲,出现双曲三维马蹄形,并在网络上积累。无穷多个连接的马蹄形促使了两个双曲周期解的异斜类γ≥0的所有值的无穷多个鞍型不变量集的共存。我们将结果应用于Hopf-Hopf奇点的一种特殊展开,即所谓的gaspard型展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信