Journal of Differential Equations最新文献

筛选
英文 中文
On the Benjamin-Bona-Mahony regularization of the Korteweg-de Vries equation Korteweg-de Vries方程的Benjamin-Bona-Mahony正则化
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-16 DOI: 10.1016/j.jde.2025.113626
Younghun Hong , Junyeong Jang , Changhun Yang
{"title":"On the Benjamin-Bona-Mahony regularization of the Korteweg-de Vries equation","authors":"Younghun Hong ,&nbsp;Junyeong Jang ,&nbsp;Changhun Yang","doi":"10.1016/j.jde.2025.113626","DOIUrl":"10.1016/j.jde.2025.113626","url":null,"abstract":"<div><div>The Benjamin-Bona-Mahony equation (BBM) is introduced as a regularization of the Korteweg-de Vries equation (KdV) for long water waves [T.B. Benjamin, J.L. Bona, and J.J. Mahony, Philos. Trans. Roy. Soc. London Ser. A 272(1220) (1972), pp. 47–78]. In this paper, we establish the convergence from the BBM to the KdV for energy class solutions. As a consequence, employing the conservation laws, we extend the known temporal interval of validity for the BBM regularization.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"447 ","pages":"Article 113626"},"PeriodicalIF":2.4,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144633368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-uniqueness for the nonlinear dynamical Lamé system 非线性动态lam<s:1>系统的非唯一性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-15 DOI: 10.1016/j.jde.2025.113603
Shunkai Mao , Peng Qu
{"title":"Non-uniqueness for the nonlinear dynamical Lamé system","authors":"Shunkai Mao ,&nbsp;Peng Qu","doi":"10.1016/j.jde.2025.113603","DOIUrl":"10.1016/j.jde.2025.113603","url":null,"abstract":"<div><div>We consider the Cauchy problem for the nonlinear dynamical Lamé system with double wave speeds in a <em>d</em>-dimensional <span><math><mo>(</mo><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> periodic domain. Moreover, the equations can be transformed into a linearly degenerate hyperbolic system. We could construct infinitely many continuous solutions in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> emanating from the same small initial data for <span><math><mi>α</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>60</mn></mrow></mfrac></math></span>. The proof relies on the convex integration scheme. We construct a new class of building blocks with compression structure by using the double wave speeds characteristic of the equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113603"},"PeriodicalIF":2.4,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144632714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a weighted semilinear Steklov problem in exterior domains 外域上的加权半线性Steklov问题
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-15 DOI: 10.1016/j.jde.2025.113608
Zongming Guo , Fangshu Wan , Dong Ye
{"title":"On a weighted semilinear Steklov problem in exterior domains","authors":"Zongming Guo ,&nbsp;Fangshu Wan ,&nbsp;Dong Ye","doi":"10.1016/j.jde.2025.113608","DOIUrl":"10.1016/j.jde.2025.113608","url":null,"abstract":"<div><div>Let <em>B</em> be the unit ball in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>. We are interested in a weighted elliptic problem in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>﹨</mo><mover><mrow><mi>B</mi></mrow><mo>‾</mo></mover></math></span> with Steklov boundary conditions:<span><span><span>(0.1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mtext>div</mtext><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>θ</mi></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>ℓ</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>﹨</mo><mover><mrow><mi>B</mi></mrow><mo>‾</mo></mover></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mrow><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>﹨</mo><mover><mrow><mi>B</mi></mrow><mo>‾</mo></mover></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>+</mo><mi>d</mi><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mtext>on ∂</mtext><mtext>B</mtext></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> with <span><math><mi>d</mi><mo>∈</mo><mi>R</mi></math></span>, <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> and<span><span><span>(0.2)</span><span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>N</mi><mo>+</mo><mi>θ</mi><mo>&gt;</mo><mn>2</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mi>τ</mi><mo>:</mo><mo>=</mo><mi>ℓ</mi><mo>−</mo><mi>θ</mi><mo>&gt;</mo><mo>−</mo><mn>2</mn><mo>.</mo></math></span></span></span> A complete picture of existence and nonexistence of radial solutions for <span><span>(0.1)</span></span> is obtained. Furthermore, for <span><math><mi>d</mi><mo>&lt;</mo><mn>0</mn></math></span>, the asymptotic behavior of radial solutions to <span><span>(0.1)</span></span> as <span><math><mi>p</mi><mo>→</mo><mo>∞</mo></math></span> is studied.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113608"},"PeriodicalIF":2.4,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144632713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Birkhoff center and statistical behavior of competitive dynamical systems Birkhoff中心与竞争动力系统的统计行为
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-15 DOI: 10.1016/j.jde.2025.113623
Xi Sheng , Yi Wang , Yufeng Zhang
{"title":"Birkhoff center and statistical behavior of competitive dynamical systems","authors":"Xi Sheng ,&nbsp;Yi Wang ,&nbsp;Yufeng Zhang","doi":"10.1016/j.jde.2025.113623","DOIUrl":"10.1016/j.jde.2025.113623","url":null,"abstract":"<div><div>We investigate the location and structure of the Birkhoff center for competitive dynamical systems, and give a comprehensive description of recurrence and statistical behavior of orbits. An order-structure dichotomy is established for any connected component of the Birkhoff center, that is, either it is unordered, or it consists of strongly ordered equilibria. Moreover, there is a canonically defined countable disjoint family <span><math><mi>F</mi></math></span> of invariant <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-cells such that each unordered connected component of the Birkhoff center lies on one of these cells. We further show that any connected component of the supports of invariant measures either consists of strongly ordered equilibria, or lies on one element of <span><math><mi>F</mi></math></span>. In particular, any 3-dimensional competitive flow has topological entropy 0.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113623"},"PeriodicalIF":2.4,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144632771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three closed characteristics on non-degenerate star-shaped hypersurfaces in R6 R6中非简并星形超曲面上的三个闭合特征
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-15 DOI: 10.1016/j.jde.2025.113605
Huagui Duan , Hui Liu , Yiming Long , Zihao Qi , Wei Wang
{"title":"Three closed characteristics on non-degenerate star-shaped hypersurfaces in R6","authors":"Huagui Duan ,&nbsp;Hui Liu ,&nbsp;Yiming Long ,&nbsp;Zihao Qi ,&nbsp;Wei Wang","doi":"10.1016/j.jde.2025.113605","DOIUrl":"10.1016/j.jde.2025.113605","url":null,"abstract":"<div><div>In this paper, we prove that for every non-degenerate <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> compact star-shaped hypersurface Σ in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> which carries no prime closed characteristic of Maslov-type index 0 or no prime closed characteristic of Maslov-type index −1, there exist at least three prime closed characteristics on Σ.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113605"},"PeriodicalIF":2.4,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decay estimates for one Aharonov-Bohm solenoid in a uniform magnetic field II: Wave equation 均匀磁场中一个Aharonov-Bohm螺线管的衰减估计II:波动方程
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-10 DOI: 10.1016/j.jde.2025.113607
Haoran Wang , Fang Zhang , Junyong Zhang
{"title":"Decay estimates for one Aharonov-Bohm solenoid in a uniform magnetic field II: Wave equation","authors":"Haoran Wang ,&nbsp;Fang Zhang ,&nbsp;Junyong Zhang","doi":"10.1016/j.jde.2025.113607","DOIUrl":"10.1016/j.jde.2025.113607","url":null,"abstract":"<div><div>This is the second paper of our project exploring the decay estimates for dispersive equations with Aharonov-Bohm solenoids in a uniform magnetic field. In the first paper <span><span>[36]</span></span>, we have studied the dispersive and Strichartz estimates for the Schrödinger equation with one Aharonov-Bohm solenoid in a uniform magnetic field. The decay estimate for the wave equation in the same setting turns out to be more delicate since the square root of the eigenvalue of the associated Schrödinger operator will prevent the direct construction of the half-wave propagator. To get around this obstacle, we turn to verify the Gaussian boundedness of the related heat kernel via two different approaches. The first one is based on the Davies-Gaffney inequality in this setting and the second one is to obtain an explicit representation of the heat kernel (which contains the full information of both the Aharonov-Bohm solenoid and the uniform magnetic field) with the aid of the Schulman-Sunada formula. As a byproduct, we also establish the Bernstein inequalities and the square function estimates for the involved Schrödinger operator with one Aharonov-Bohm solenoid in a uniform magnetic field.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113607"},"PeriodicalIF":2.4,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144589048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion approximation and stability of stochastic differential equations with singular perturbation 具有奇异摄动的随机微分方程的扩散逼近与稳定性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-10 DOI: 10.1016/j.jde.2025.113602
Huagui Liu , Shujun Liu , Fuke Wu , Xiaofeng Zong
{"title":"Diffusion approximation and stability of stochastic differential equations with singular perturbation","authors":"Huagui Liu ,&nbsp;Shujun Liu ,&nbsp;Fuke Wu ,&nbsp;Xiaofeng Zong","doi":"10.1016/j.jde.2025.113602","DOIUrl":"10.1016/j.jde.2025.113602","url":null,"abstract":"<div><div>This paper investigates diffusion approximation and stability of non-autonomous singularly perturbed stochastic differential equations with locally Lipschitz continuous coefficients. By using the first-order perturbation test function method and formulation of the martingale problem, the averaging principle is established and the averaging system is obtained. Under appropriate conditions, if the averaging system is exponentially stable, this paper shows that the original slow component is also uniformly asymptotically stable. Since the averaging system is often simpler than the original system, this stability result is interesting. Finally, several examples illustrate our results.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113602"},"PeriodicalIF":2.4,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144589050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global bifurcation in symmetric systems of nonlinear wave equations 非线性波动方程对称系统的全局分岔
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-10 DOI: 10.1016/j.jde.2025.113600
Carlos García-Azpeitia , Ziad Ghanem , Wiesław Krawcewicz
{"title":"Global bifurcation in symmetric systems of nonlinear wave equations","authors":"Carlos García-Azpeitia ,&nbsp;Ziad Ghanem ,&nbsp;Wiesław Krawcewicz","doi":"10.1016/j.jde.2025.113600","DOIUrl":"10.1016/j.jde.2025.113600","url":null,"abstract":"<div><div>In this paper, we use the equivariant degree theory to establish a global bifurcation result for the existence of non-stationary branches of solutions to a nonlinear, two-parameter family of hyperbolic wave equations with local delay and non-trivial damping. As a motivating example, we consider an application of our result to a system of <em>N</em> identical vibrating strings with dihedral coupling relations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113600"},"PeriodicalIF":2.4,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144589049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sample path properties and small ball probabilities for stochastic fractional diffusion equations 随机分数扩散方程的样本路径性质和小球概率
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-09 DOI: 10.1016/j.jde.2025.113604
Yuhui Guo , Jian Song , Ran Wang , Yimin Xiao
{"title":"Sample path properties and small ball probabilities for stochastic fractional diffusion equations","authors":"Yuhui Guo ,&nbsp;Jian Song ,&nbsp;Ran Wang ,&nbsp;Yimin Xiao","doi":"10.1016/j.jde.2025.113604","DOIUrl":"10.1016/j.jde.2025.113604","url":null,"abstract":"<div><div>We consider the following stochastic space-time fractional diffusion equation with vanishing initial condition:<span><span><span><math><msup><mrow><mo>∂</mo></mrow><mrow><mi>β</mi></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>+</mo><msubsup><mrow><mi>I</mi></mrow><mrow><mn>0</mn><mo>+</mo></mrow><mrow><mi>γ</mi></mrow></msubsup><mrow><mo>[</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>]</mo></mrow><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mi>γ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> is the fractional/power of Laplacian and <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span> is a fractional space-time Gaussian noise. We prove the existence and uniqueness of the solution and then focus on various sample path regularity properties of the solution. More specifically, we establish the exact uniform and local moduli of continuity and Chung's laws of the iterated logarithm. The small ball probability is also studied.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113604"},"PeriodicalIF":2.4,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse scattering problem for operators with a finite-dimensional non-local potential 有限维非局域势算子的逆散射问题
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2025-07-09 DOI: 10.1016/j.jde.2025.113606
V.A. Zolotarev
{"title":"Inverse scattering problem for operators with a finite-dimensional non-local potential","authors":"V.A. Zolotarev","doi":"10.1016/j.jde.2025.113606","DOIUrl":"10.1016/j.jde.2025.113606","url":null,"abstract":"<div><div>Scattering problem for a self-adjoint integro-differential operator, which is the sum of the operator of the second derivative and of a finite-dimensional self-adjoint operator, is studied. Jost solutions are found and it is shown that the scattering function has a multiplicative structure, besides, each of the multipliers is a scattering coefficient for a pair of self-adjoint operators, one of which is a one-dimensional perturbation of the other. Solution of the inverse problem is based upon the solutions to the inverse problem for every multiplier. A technique for finding parameters of the finite-dimensional perturbation via the scattering data is described.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113606"},"PeriodicalIF":2.4,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信