{"title":"Positive harmonically bounded solutions for semi-linear equations","authors":"Wolfhard Hansen , Krzysztof Bogdan","doi":"10.1016/j.jde.2025.113544","DOIUrl":"10.1016/j.jde.2025.113544","url":null,"abstract":"<div><div>For open sets <em>U</em> in some space <em>X</em>, we are interested in positive solutions to semi-linear equations <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>u</mi><mo>)</mo><mi>μ</mi></math></span> on <em>U</em>. Here <em>L</em> may be an elliptic or parabolic operator of second order (generator of a diffusion process) or an integro-differential operator (generator of a jump process), <em>μ</em> is a positive measure on <em>U</em> and <em>φ</em> is an arbitrary measurable real function on <span><math><mi>U</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> such that the functions <span><math><mi>t</mi><mo>↦</mo><mi>φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>U</mi></math></span>, are continuous, increasing and vanish at <span><math><mi>t</mi><mo>=</mo><mn>0</mn></math></span>.</div><div>More precisely, given a measurable function <span><math><mi>h</mi><mo>≥</mo><mn>0</mn></math></span> on <em>X</em> which is <em>L</em>-harmonic on <em>U</em>, that is, continuous real on <em>U</em> with <span><math><mi>L</mi><mi>h</mi><mo>=</mo><mn>0</mn></math></span> on <em>U</em>, we give necessary and sufficient conditions for the existence of positive solutions <em>u</em> such that <span><math><mi>u</mi><mo>=</mo><mi>h</mi></math></span> on <span><math><mi>X</mi><mo>∖</mo><mi>U</mi></math></span> and <em>u</em> has the same “boundary behavior” as <em>h</em> on <em>U</em> (Problem 1) or, alternatively, <span><math><mi>u</mi><mo>≤</mo><mi>h</mi></math></span> on <em>U</em>, but <span><math><mi>u</mi><mo>≢</mo><mn>0</mn></math></span> on <em>U</em> (Problem 2).</div><div>We show that these problems are equivalent to problems of the existence of positive solutions to certain integral equations <span><math><mi>u</mi><mo>+</mo><mi>K</mi><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>g</mi></math></span> on <em>U</em>, <em>K</em> being a potential kernel. We solve them in the general setting of balayage spaces <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span> which, in probabilistic terms, corresponds to the setting of transient Hunt processes with strong Feller resolvent.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113544"},"PeriodicalIF":2.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144470602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The nonlocal Neumann problem","authors":"Leonhard Frerick, Christian Vollmann, Michael Vu","doi":"10.1016/j.jde.2025.113553","DOIUrl":"10.1016/j.jde.2025.113553","url":null,"abstract":"<div><div>The classical local Neumann problem is well studied and solutions of this problem lie, in general, in a Sobolev space. In this work, we focus on <em>nonlocal</em> Neumann problems with measurable, nonnegative kernels, whose solutions require less regularity assumptions. For kernels of this kind we formulate and study the weak formulation of the nonlocal Neumann problem and we investigate a nonlocal counterpart of the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> as well as a resulting nonlocal trace space. We further establish, mainly for symmetric kernels, various existence results for the weak solution of the Neumann problem and we discuss related necessary conditions. Both, homogeneous and nonhomogeneous Neumann boundary conditions are considered.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113553"},"PeriodicalIF":2.4,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144338921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Very weak solutions of the Dirichlet problem for 2-Hessian equation","authors":"Tongtong Li , Guohuan Qiu","doi":"10.1016/j.jde.2025.113577","DOIUrl":"10.1016/j.jde.2025.113577","url":null,"abstract":"<div><div>For any <em>α</em> small, we construct infinitely many <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> very weak solutions to the 2-Hessian equation with prescribed boundary value. The proof relies on the convex integration method and cut-off technique.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113577"},"PeriodicalIF":2.4,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144364901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global existence of weak solutions to the nonlinear Vlasov–Fokker–Planck equation","authors":"Young-Pil Choi , Byung-Hoon Hwang , Yeongseok Yoo","doi":"10.1016/j.jde.2025.113573","DOIUrl":"10.1016/j.jde.2025.113573","url":null,"abstract":"<div><div>In this paper, we study the nonlinear Fokker–Planck equation with fixed collision frequency. We establish the global-in-time existence of weak solutions to the equation with large initial data and show that our solution satisfies the conservation laws of mass, momentum, and energy, and Boltzmann's <em>H</em>-theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113573"},"PeriodicalIF":2.4,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144364900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Qualitative analysis for Hartree-Fock system with Hardy-Littlewood-Sobolev critical exponent","authors":"Meng Li , Haoyuan Xu , Meihua Yang , Maoding Zhen","doi":"10.1016/j.jde.2025.113565","DOIUrl":"10.1016/j.jde.2025.113565","url":null,"abstract":"<div><div>In this paper, we develop an exhaustive analysis on standing waves with prescribed mass for the coupled Hartree-Fock system as following, which is introduced by Hartree in the 1920's and developed by Fock for describing large systems of identical fermions,<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>=</mo><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>u</mi><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>u</mi><mo>+</mo><mi>β</mi><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>u</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>=</mo><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>v</mi><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>v</mi><mo>+</mo><mi>β</mi><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>v</mi></mtd></mtr></mtable></mrow><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span></span></span> under mass constraint conditions<span><span><span><math><mrow><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></munder><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mspace></ms","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113565"},"PeriodicalIF":2.4,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Small normalised solutions for a Schrödinger-Poisson system in expanding domains: Multiplicity and asymptotic behaviour","authors":"Edwin Gonzalo Murcia , Gaetano Siciliano","doi":"10.1016/j.jde.2025.113571","DOIUrl":"10.1016/j.jde.2025.113571","url":null,"abstract":"<div><div>Given a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, we consider the following nonlinear Schrödinger-Poisson type system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>ϕ</mi><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>ω</mi><mi>u</mi><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>ϕ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mspace></mspace><mtext>on </mtext><mo>∂</mo><mo>(</mo><mi>λ</mi><mi>Ω</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><mi>λ</mi><mi>Ω</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace></mtd></mtr></mtable></mrow></math></span></span></span> in the expanding domain <span><math><mi>λ</mi><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>λ</mi><mo>></mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, in the unknowns <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span>. We show that, for arbitrary large values of the expanding parameter <em>λ</em> and arbitrary small values of the mass <span><math><mi>ρ</mi><mo>></mo><mn>0</mn></math></span>, the number of solutions is at least the Ljusternick-Schnirelmann category of <em>λ</em>Ω. Moreover we show that as <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> the solutions found converge to a ground state of the problem in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113571"},"PeriodicalIF":2.4,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple normalized solutions for Schrödinger-Maxwell equation with Sobolev critical exponent and mixed nonlinearities","authors":"Jin-Cai Kang , Yong-Yong Li , Chun-Lei Tang","doi":"10.1016/j.jde.2025.113564","DOIUrl":"10.1016/j.jde.2025.113564","url":null,"abstract":"<div><div>In this paper, we study the Schrödinger-Maxwell equation with critical growth<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mi>κ</mi><mrow><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span> is prescribed, <span><math><mi>κ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mi>R</mi></math></span>, <span><math><mn>2</mn><mo><</mo><mi>q</mi><mo><</mo><mn>6</mn></math></span>, ⁎ denotes the convolution and <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> appears as a Lagrange multiplier. Motivated by the works of Wei and Wu (2022) <span><span>[41]</span></span> for <span><math><mi>κ</mi><mo>=</mo><mn>0</mn></math></span> and Bellazzini and Siciliano (2011) <span><span>[5]</span></span> for homogeneous nonlinearity, we get two normalized solutions when <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span> and <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span>, one of which is ground state normalized solution. It is worth emphasizing that the method of Schwarz spherical rearrangement is invalid for the case of <span><math><mi>κ</mi><mo>></mo><mn>0</mn></math></span>, different from the case of <span><math><mi>κ</mi><mo>=</mo><mn>0</mn></math></span>, and it is hard to establish the strictly subadditive inequality of least energy to exclude the dichotomy of minimizing sequence standardly. To our knowledge, the existence of second solution for the above problem has not been addressed in the current literatures. Moreover, we will show a nonexistence result of positive normalized solution when <span><math><mi>μ</mi><mo>≤</mo><mn>0</mn></math></span> and <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span>, which can be regarded as a generalization and improvement of Jeanjean and Le (2021) <span><span>[21]</span></span> from the case of <span><math><mi","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113564"},"PeriodicalIF":2.4,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The upper semi-continuity of random attractors to the stochastic evolution equations driven by rough path with Hurst index H∈(13,12]","authors":"Qiyong Cao, Hongjun Gao","doi":"10.1016/j.jde.2025.113552","DOIUrl":"10.1016/j.jde.2025.113552","url":null,"abstract":"<div><div>In this paper, we consider the upper semi-continuity of the random attractors for a class of evolution equations driven by smooth stationary fractional noise with Hurst index <span><math><mi>H</mi><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113552"},"PeriodicalIF":2.4,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144313629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blake Barker , Jared C. Bronski , Vera Mikyoung Hur , Zhao Yang
{"title":"Asymptotic stability of sharp fronts: Analysis and rigorous computation","authors":"Blake Barker , Jared C. Bronski , Vera Mikyoung Hur , Zhao Yang","doi":"10.1016/j.jde.2025.113550","DOIUrl":"10.1016/j.jde.2025.113550","url":null,"abstract":"<div><div>We investigate the stability of traveling front solutions to nonlinear diffusive-dispersive equations of Burgers type, with a primary focus on the Korteweg-de Vries–Burgers (KdVB) equation, although our analytical findings extend more broadly. Manipulating the temporal modulation of the translation parameter of the front and employing the energy method, we establish asymptotic, nonlinear, and orbital stability, provided that an auxiliary Schrödinger equation possesses precisely one bound state. Notably, our result is independent of the monotonicity of the profile and does not necessitate the initial condition to be close to the front. We identify a sufficient condition for stability based on a functional that characterizes the ‘width’ of the traveling wave profile. Analytical verification for the KdVB equation confirms that this sufficient condition holds for the relative dispersion parameter within an open interval <span><math><mo>⊃</mo><mo>[</mo><mo>−</mo><mn>0.25</mn><mo>,</mo><mn>0.25</mn><mo>]</mo></math></span>, encompassing all monotone profiles. Utilizing validated numerics or rigorous computation, we present a computer-assisted proof demonstrating that the stability condition itself holds for parameter values within the interval <span><math><mo>[</mo><mn>0.2533</mn><mo>,</mo><mn>3.9</mn><mo>]</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113550"},"PeriodicalIF":2.4,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144312767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetry breaking bifurcation and the stability of stationary solutions of a phase-field model","authors":"Yasuhito Miyamoto , Tatsuki Mori , Sohei Tasaki , Tohru Tsujikawa , Shoji Yotsutani","doi":"10.1016/j.jde.2025.113500","DOIUrl":"10.1016/j.jde.2025.113500","url":null,"abstract":"<div><div>We have been investigating the global bifurcation diagrams of stationary solutions for a phase field model proposed by Fix and Caginalp in a one-dimensional case. It has recently been shown that there exists a secondary bifurcation with a symmetry-breaking phenomenon from a branch consisting of symmetric solutions in the case where the total enthalpy equals zero. In this paper, we determine the stability/instability of all symmetric solutions and asymmetric solutions near the secondary bifurcation point. Moreover, we show representation formulas for all eigenvalues and eigenfunctions for the linearized eigenvalue problem around the symmetric solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113500"},"PeriodicalIF":2.4,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144306837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}