Multiple solutions for the nonlinear Schrödinger-Poisson system with a partial confinement

IF 2.3 2区 数学 Q1 MATHEMATICS
Liying Shan , Wei Shuai , Jianghua Ye
{"title":"Multiple solutions for the nonlinear Schrödinger-Poisson system with a partial confinement","authors":"Liying Shan ,&nbsp;Wei Shuai ,&nbsp;Jianghua Ye","doi":"10.1016/j.jde.2025.113815","DOIUrl":null,"url":null,"abstract":"<div><div>We study the following nonlinear Schrödinger-Poisson system with a partial confinement<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mo>(</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo><mi>u</mi><mo>+</mo><mi>λ</mi><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span> and <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a parameter. The existence and nonexistence results are established by variational methods, depending on the parameters <em>p</em> and <em>λ</em>. It turns out that <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span> is a critical value for the existence of solutions.</div><div>Our results can be viewed as an extension of the results of Ruiz <span><span>[33]</span></span> concerning the nonlinear Schrödinger-Poisson equation with a positive constant potential. However, due to the presence of partial confinement, the Nehari-Pohozaev manifold method is no longer applicable in this paper for <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>3</mn><mo>,</mo><mfrac><mrow><mn>16</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>]</mo></math></span>. We need to explore the more complicated underlying functional geometry with a different variational approach. Moreover, we also construct saddle type nodal solutions whose nodal domains meet at the origin.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113815"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008423","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following nonlinear Schrödinger-Poisson system with a partial confinement{Δu+(x12+x22)u+λϕ(x)u=|u|p2u,xR3,Δϕ=u2,xR3, where p(2,6) and λ>0 is a parameter. The existence and nonexistence results are established by variational methods, depending on the parameters p and λ. It turns out that p=3 is a critical value for the existence of solutions.
Our results can be viewed as an extension of the results of Ruiz [33] concerning the nonlinear Schrödinger-Poisson equation with a positive constant potential. However, due to the presence of partial confinement, the Nehari-Pohozaev manifold method is no longer applicable in this paper for p(3,165]. We need to explore the more complicated underlying functional geometry with a different variational approach. Moreover, we also construct saddle type nodal solutions whose nodal domains meet at the origin.
具有部分约束的非线性Schrödinger-Poisson系统的多解
我们研究了以下非线性Schrödinger-Poisson系统,该系统具有部分约束{−Δu+(x12+x22)u+λ φ (x)u=|u|p−2u,x∈R3,−Δϕ=u2,x∈R3,其中p∈(2,6),λ>;0为参数。根据参数p和λ,用变分方法建立了存在性和不存在性的结果。结果表明,p=3是解存在的临界值。我们的结果可以看作Ruiz[33]关于具有正常数势的非线性Schrödinger-Poisson方程的结果的推广。然而,由于部分约束的存在,对于p∈(3165),本文不再适用Nehari-Pohozaev流形方法。我们需要用不同的变分方法来探索更复杂的底层函数几何。此外,我们还构造了节点域在原点相交的鞍型节点解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信