Fractional De Giorgi conjecture in dimension 2 via complex-plane methods

IF 2.3 2区 数学 Q1 MATHEMATICS
Serena Dipierro , João Gonçalves da Silva , Giorgio Poggesi , Enrico Valdinoci
{"title":"Fractional De Giorgi conjecture in dimension 2 via complex-plane methods","authors":"Serena Dipierro ,&nbsp;João Gonçalves da Silva ,&nbsp;Giorgio Poggesi ,&nbsp;Enrico Valdinoci","doi":"10.1016/j.jde.2025.113816","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a new proof of the fractional version of the De Giorgi conjecture for the Allen-Cahn equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for the full range of exponents. Our proof combines a method introduced by A. Farina in 2003 with the <em>s</em>-harmonic extension of the fractional Laplacian in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> introduced by L. Caffarelli and L. Silvestre in 2007.</div><div>We also provide a representation formula for finite-energy weak solutions of a class of weighted elliptic partial differential equations in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> under Neumann boundary conditions. This generalizes the <em>s</em>-harmonic extension of the fractional Laplacian and allows us to relate a general problem in the extended space with a nonlocal problem on the trace.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113816"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008435","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a new proof of the fractional version of the De Giorgi conjecture for the Allen-Cahn equation in R2 for the full range of exponents. Our proof combines a method introduced by A. Farina in 2003 with the s-harmonic extension of the fractional Laplacian in the half-space R+3 introduced by L. Caffarelli and L. Silvestre in 2007.
We also provide a representation formula for finite-energy weak solutions of a class of weighted elliptic partial differential equations in the half-space R+n+1 under Neumann boundary conditions. This generalizes the s-harmonic extension of the fractional Laplacian and allows us to relate a general problem in the extended space with a nonlocal problem on the trace.
基于复平面方法的二维分数阶De Giorgi猜想
给出了R2中全指数范围的Allen-Cahn方程的分数阶De Giorgi猜想的一个新证明。我们的证明结合了a . Farina在2003年提出的方法和L. Caffarelli和L. Silvestre在2007年提出的半空间R+3中分数阶拉普拉斯算子的s调和扩展。给出了半空间R+n+1中一类加权椭圆型偏微分方程在Neumann边界条件下的有限能量弱解的表示公式。这推广了分数阶拉普拉斯算子的s调和扩展,并允许我们将扩展空间中的一般问题与迹上的非局部问题联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信