Serena Dipierro , João Gonçalves da Silva , Giorgio Poggesi , Enrico Valdinoci
{"title":"基于复平面方法的二维分数阶De Giorgi猜想","authors":"Serena Dipierro , João Gonçalves da Silva , Giorgio Poggesi , Enrico Valdinoci","doi":"10.1016/j.jde.2025.113816","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a new proof of the fractional version of the De Giorgi conjecture for the Allen-Cahn equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for the full range of exponents. Our proof combines a method introduced by A. Farina in 2003 with the <em>s</em>-harmonic extension of the fractional Laplacian in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> introduced by L. Caffarelli and L. Silvestre in 2007.</div><div>We also provide a representation formula for finite-energy weak solutions of a class of weighted elliptic partial differential equations in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> under Neumann boundary conditions. This generalizes the <em>s</em>-harmonic extension of the fractional Laplacian and allows us to relate a general problem in the extended space with a nonlocal problem on the trace.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113816"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional De Giorgi conjecture in dimension 2 via complex-plane methods\",\"authors\":\"Serena Dipierro , João Gonçalves da Silva , Giorgio Poggesi , Enrico Valdinoci\",\"doi\":\"10.1016/j.jde.2025.113816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We provide a new proof of the fractional version of the De Giorgi conjecture for the Allen-Cahn equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for the full range of exponents. Our proof combines a method introduced by A. Farina in 2003 with the <em>s</em>-harmonic extension of the fractional Laplacian in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> introduced by L. Caffarelli and L. Silvestre in 2007.</div><div>We also provide a representation formula for finite-energy weak solutions of a class of weighted elliptic partial differential equations in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> under Neumann boundary conditions. This generalizes the <em>s</em>-harmonic extension of the fractional Laplacian and allows us to relate a general problem in the extended space with a nonlocal problem on the trace.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113816\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008435\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008435","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fractional De Giorgi conjecture in dimension 2 via complex-plane methods
We provide a new proof of the fractional version of the De Giorgi conjecture for the Allen-Cahn equation in for the full range of exponents. Our proof combines a method introduced by A. Farina in 2003 with the s-harmonic extension of the fractional Laplacian in the half-space introduced by L. Caffarelli and L. Silvestre in 2007.
We also provide a representation formula for finite-energy weak solutions of a class of weighted elliptic partial differential equations in the half-space under Neumann boundary conditions. This generalizes the s-harmonic extension of the fractional Laplacian and allows us to relate a general problem in the extended space with a nonlocal problem on the trace.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics