Grushin平面上的调和映射

IF 2.3 2区 数学 Q1 MATHEMATICS
Tomasz Adamowicz , Marcin Walicki , Ben Warhurst
{"title":"Grushin平面上的调和映射","authors":"Tomasz Adamowicz ,&nbsp;Marcin Walicki ,&nbsp;Ben Warhurst","doi":"10.1016/j.jde.2025.113806","DOIUrl":null,"url":null,"abstract":"<div><div>We study the Grushin spaces given by Hölder regular vector fields with the Carnot–Carathéodory distance, equipped with the natural weighted <em>n</em>-Lebesgue measure. It turns out that such a measure is <em>n</em>-Ahlfors regular and <em>p</em>-Muckenhoupt for <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. We investigate the related 2-Dirichlet energy and the harmonic mappings, and focus our attention on harmonic functions and mappings from domains in a Grushin plane to Euclidean spaces <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, for <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. Our results enclose the second order Sobolev regularity, the Bochner identity and its consequences for the regularity of harmonic mappings, the Liouville-type theorems and a counterpart of the Lewy theorem. Furthermore, the Korevaar–Schoen energy of mappings on Grushin planes is studied and proven to be equivalent to the 2-Dirichlet energy. The discussion is illustrated by several examples.</div><div>We generalize some geometric and regularity results by Ferrari–Valdinoci <span><span>[23]</span></span> and Franchi–Serapioni <span><span>[30]</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113806"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic mappings on Grushin planes\",\"authors\":\"Tomasz Adamowicz ,&nbsp;Marcin Walicki ,&nbsp;Ben Warhurst\",\"doi\":\"10.1016/j.jde.2025.113806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the Grushin spaces given by Hölder regular vector fields with the Carnot–Carathéodory distance, equipped with the natural weighted <em>n</em>-Lebesgue measure. It turns out that such a measure is <em>n</em>-Ahlfors regular and <em>p</em>-Muckenhoupt for <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. We investigate the related 2-Dirichlet energy and the harmonic mappings, and focus our attention on harmonic functions and mappings from domains in a Grushin plane to Euclidean spaces <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, for <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. Our results enclose the second order Sobolev regularity, the Bochner identity and its consequences for the regularity of harmonic mappings, the Liouville-type theorems and a counterpart of the Lewy theorem. Furthermore, the Korevaar–Schoen energy of mappings on Grushin planes is studied and proven to be equivalent to the 2-Dirichlet energy. The discussion is illustrated by several examples.</div><div>We generalize some geometric and regularity results by Ferrari–Valdinoci <span><span>[23]</span></span> and Franchi–Serapioni <span><span>[30]</span></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113806\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008332\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008332","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Hölder正则向量场给出的Grushin空间,该空间具有carnot - carathacimodory距离,具有自然加权n-Lebesgue测度。结果表明,该测度为n-Ahlfors正则,p-Muckenhoupt。我们研究了相关的2-Dirichlet能量和调和映射,并将注意力集中在调和函数和从Grushin平面上的域到欧几里德空间Rm的映射上,当m≥1时。我们的结果包括二阶Sobolev正则,Bochner恒等式及其对调和映射正则性的推论,liouville型定理和Lewy定理的对应。进一步研究了Grushin平面上映射的korevar - schoen能量,并证明了其等价于2-Dirichlet能量。用几个例子来说明讨论。我们推广了Ferrari-Valdinoci[23]和Franchi-Serapioni[30]的一些几何和正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic mappings on Grushin planes
We study the Grushin spaces given by Hölder regular vector fields with the Carnot–Carathéodory distance, equipped with the natural weighted n-Lebesgue measure. It turns out that such a measure is n-Ahlfors regular and p-Muckenhoupt for p>1. We investigate the related 2-Dirichlet energy and the harmonic mappings, and focus our attention on harmonic functions and mappings from domains in a Grushin plane to Euclidean spaces Rm, for m1. Our results enclose the second order Sobolev regularity, the Bochner identity and its consequences for the regularity of harmonic mappings, the Liouville-type theorems and a counterpart of the Lewy theorem. Furthermore, the Korevaar–Schoen energy of mappings on Grushin planes is studied and proven to be equivalent to the 2-Dirichlet energy. The discussion is illustrated by several examples.
We generalize some geometric and regularity results by Ferrari–Valdinoci [23] and Franchi–Serapioni [30].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信