Cuncai Liu , Fengjuan Meng , Xiaoying Han , Chang Zhang
{"title":"非线性阻尼和超三次非线性波动方程","authors":"Cuncai Liu , Fengjuan Meng , Xiaoying Han , Chang Zhang","doi":"10.1016/j.jde.2025.113783","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates a semilinear wave equation characterized by nonlinear damping <span><math><mi>g</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></math></span> and nonlinearity <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span>. First, the well-posedness of weak solutions across broader exponent ranges for <em>g</em> and <em>f</em> is established, by utilizing a priori space-time estimates. Moreover, the existence of a global attractor in the phase space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is obtained. Furthermore, it is proved that this global attractor is regular, implying that it is a bounded subset of <span><math><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>∩</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>)</mo><mo>×</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"452 ","pages":"Article 113783"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave equation with nonlinear damping and super-cubic nonlinearity\",\"authors\":\"Cuncai Liu , Fengjuan Meng , Xiaoying Han , Chang Zhang\",\"doi\":\"10.1016/j.jde.2025.113783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates a semilinear wave equation characterized by nonlinear damping <span><math><mi>g</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></math></span> and nonlinearity <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span>. First, the well-posedness of weak solutions across broader exponent ranges for <em>g</em> and <em>f</em> is established, by utilizing a priori space-time estimates. Moreover, the existence of a global attractor in the phase space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is obtained. Furthermore, it is proved that this global attractor is regular, implying that it is a bounded subset of <span><math><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>∩</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>)</mo><mo>×</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"452 \",\"pages\":\"Article 113783\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008101\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wave equation with nonlinear damping and super-cubic nonlinearity
This study investigates a semilinear wave equation characterized by nonlinear damping and nonlinearity . First, the well-posedness of weak solutions across broader exponent ranges for g and f is established, by utilizing a priori space-time estimates. Moreover, the existence of a global attractor in the phase space is obtained. Furthermore, it is proved that this global attractor is regular, implying that it is a bounded subset of .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics