Global multiplicity results in a Moore–Nehari type problem with a spectral parameter

IF 2.4 2区 数学 Q1 MATHEMATICS
Julián López-Gómez , Eduardo Muñoz-Hernández , Fabio Zanolin
{"title":"Global multiplicity results in a Moore–Nehari type problem with a spectral parameter","authors":"Julián López-Gómez ,&nbsp;Eduardo Muñoz-Hernández ,&nbsp;Fabio Zanolin","doi":"10.1016/j.jde.2025.113628","DOIUrl":null,"url":null,"abstract":"<div><div>This paper analyzes the structure of the set of positive solutions of <span><span>(1.1)</span></span>, where <span><math><mi>a</mi><mo>≡</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> is the piece-wise constant function defined in <span><span>(1.3)</span></span> for some <span><math><mi>h</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. In our analysis, <em>λ</em> is regarded as a bifurcation parameter, whereas <em>h</em> is viewed as a deformation parameter between the autonomous case when <span><math><mi>a</mi><mo>=</mo><mn>1</mn></math></span> and the linear case when <span><math><mi>a</mi><mo>=</mo><mn>0</mn></math></span>. In this paper, besides establishing some of the multiplicity results suggested by the numerical experiments of <span><span>[2]</span></span>, we have analyzed the asymptotic behavior of the positive solutions of <span><span>(1.1)</span></span> as <span><math><mi>h</mi><mo>↑</mo><mn>1</mn></math></span>, when the shadow system of <span><span>(1.1)</span></span> is the linear equation <span><math><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span>. This is the first paper where such a problem has been addressed. Numerics is of no help in analyzing this singular perturbation problem because the positive solutions blow-up point-wise in <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> as <span><math><mi>h</mi><mo>↑</mo><mn>1</mn></math></span> if <span><math><mi>λ</mi><mo>&lt;</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"447 ","pages":"Article 113628"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006552","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the structure of the set of positive solutions of (1.1), where aah is the piece-wise constant function defined in (1.3) for some h(0,1). In our analysis, λ is regarded as a bifurcation parameter, whereas h is viewed as a deformation parameter between the autonomous case when a=1 and the linear case when a=0. In this paper, besides establishing some of the multiplicity results suggested by the numerical experiments of [2], we have analyzed the asymptotic behavior of the positive solutions of (1.1) as h1, when the shadow system of (1.1) is the linear equation u=π2u. This is the first paper where such a problem has been addressed. Numerics is of no help in analyzing this singular perturbation problem because the positive solutions blow-up point-wise in (0,1) as h1 if λ<π2.
全局多重性导致一个具有谱参数的Moore-Nehari型问题
本文分析了式(1.1)的正解集的结构,其中a≡ah是式(1.3)中定义的某h∈(0,1)的分段常数函数。在我们的分析中,λ被视为分岔参数,而h被视为a=1时自治情况和a=0时线性情况之间的变形参数。本文除了建立[2]数值实验所得的一些多重性结果外,还分析了当(1.1)的阴影系为线性方程- u″=π2u时,(1.1)的正解在h ^ 1时的渐近性。这是第一篇讨论这一问题的论文。在分析奇异摄动问题时,数值是没有帮助的,因为当λ<;π2为h ^ 1时,正解在(0,1)中逐点爆破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信