Rachid Benabidallah , François Ebobisse , Mohamed Azouz
{"title":"无限水平层中可压缩全MHD方程的静止磁对流运动","authors":"Rachid Benabidallah , François Ebobisse , Mohamed Azouz","doi":"10.1016/j.jde.2025.113744","DOIUrl":null,"url":null,"abstract":"<div><div>In an infinite horizontal layer, we consider the equations of the viscous, compressible, and heat conducting magnetohydrodynamic steady flows subject to the gravitational force and to a large gradient of the temperature across the layer. As boundary conditions, we assume in the vertical directions, slip-boundary for the velocity and vertical conditions for magnetic field. The existence of a stationary solution in a small neighborhood of a steady profile close to the rest state is obtained in the Sobolev spaces as limit of a sequence of fixed points of some operators constructed from a suitable linearization of the full magnetohydrodynamic system of equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113744"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stationary magneto-convective motion of compressible full MHD equations in an infinite horizontal layer\",\"authors\":\"Rachid Benabidallah , François Ebobisse , Mohamed Azouz\",\"doi\":\"10.1016/j.jde.2025.113744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In an infinite horizontal layer, we consider the equations of the viscous, compressible, and heat conducting magnetohydrodynamic steady flows subject to the gravitational force and to a large gradient of the temperature across the layer. As boundary conditions, we assume in the vertical directions, slip-boundary for the velocity and vertical conditions for magnetic field. The existence of a stationary solution in a small neighborhood of a steady profile close to the rest state is obtained in the Sobolev spaces as limit of a sequence of fixed points of some operators constructed from a suitable linearization of the full magnetohydrodynamic system of equations.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113744\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007715\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007715","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the stationary magneto-convective motion of compressible full MHD equations in an infinite horizontal layer
In an infinite horizontal layer, we consider the equations of the viscous, compressible, and heat conducting magnetohydrodynamic steady flows subject to the gravitational force and to a large gradient of the temperature across the layer. As boundary conditions, we assume in the vertical directions, slip-boundary for the velocity and vertical conditions for magnetic field. The existence of a stationary solution in a small neighborhood of a steady profile close to the rest state is obtained in the Sobolev spaces as limit of a sequence of fixed points of some operators constructed from a suitable linearization of the full magnetohydrodynamic system of equations.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics