Bifurcation of gravity-capillary Stokes waves with constant vorticity

IF 2.3 2区 数学 Q1 MATHEMATICS
T. Barbieri , M. Berti , A. Maspero , M. Mazzucchelli
{"title":"Bifurcation of gravity-capillary Stokes waves with constant vorticity","authors":"T. Barbieri ,&nbsp;M. Berti ,&nbsp;A. Maspero ,&nbsp;M. Mazzucchelli","doi":"10.1016/j.jde.2025.113753","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the gravity-capillary water waves equations of a 2D fluid with constant vorticity. By employing variational methods we prove the bifurcation of periodic traveling water waves –which are steady in a moving frame– for <em>all</em> the values of gravity, surface tension, constant vorticity, depth and wavelenght, extending previous results valid for restricted values of the parameters. We parametrize the bifurcating Stokes waves either with their speed or their momentum.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113753"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007806","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the gravity-capillary water waves equations of a 2D fluid with constant vorticity. By employing variational methods we prove the bifurcation of periodic traveling water waves –which are steady in a moving frame– for all the values of gravity, surface tension, constant vorticity, depth and wavelenght, extending previous results valid for restricted values of the parameters. We parametrize the bifurcating Stokes waves either with their speed or their momentum.
等涡度重力-毛细斯托克斯波的分岔
考虑了二维等涡度流体的重力-毛细水波方程。本文用变分方法证明了在重力、表面张力、定涡度、深度和波长的所有条件下,周期行水波在运动坐标系中是稳定的分岔性,推广了以往对这些参数的限定值有效的结果。我们用分岔斯托克斯波的速度或动量来参数化它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信