利用范式定理研究具有不对称势的概周期振子的有界性

IF 2.3 2区 数学 Q1 MATHEMATICS
Shuyi Wang, Min Li, Daxiong Piao
{"title":"利用范式定理研究具有不对称势的概周期振子的有界性","authors":"Shuyi Wang,&nbsp;Min Li,&nbsp;Daxiong Piao","doi":"10.1016/j.jde.2025.113763","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the boundedness of solutions for the semilinear asymmetric oscillator<span><span><span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <em>p</em> is real analytic and almost-periodic function with infinitely many rationally independent frequencies. A key contribution is the development of a novel normal form theorem for planar almost-periodic mappings under a weighted Diophantine-type nonresonance condition <span><span>(1.7)</span></span>. Unlike prior approaches relying on twist conditions or spatial averaging, our framework eliminates geometric constraints by leveraging the spatial structure of infinite-dimensional frequencies. As a direct consequence, we prove two main results: 1. The existence of infinitely many almost-periodic solutions; 2. The boundedness of all solutions for the asymmetric oscillator, even when traditional twist integrals (e.g., <span><span>(1.5)</span></span>) vanish. This work unifies periodic/quasi-periodic boundedness theories and extends them to the almost-periodic regime, resolving long-standing limitations in planar Hamiltonian systems with asymmetric potentials.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113763"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The boundedness of almost-periodic oscillators with asymmetric potentials via normal form theorem\",\"authors\":\"Shuyi Wang,&nbsp;Min Li,&nbsp;Daxiong Piao\",\"doi\":\"10.1016/j.jde.2025.113763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the boundedness of solutions for the semilinear asymmetric oscillator<span><span><span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <em>p</em> is real analytic and almost-periodic function with infinitely many rationally independent frequencies. A key contribution is the development of a novel normal form theorem for planar almost-periodic mappings under a weighted Diophantine-type nonresonance condition <span><span>(1.7)</span></span>. Unlike prior approaches relying on twist conditions or spatial averaging, our framework eliminates geometric constraints by leveraging the spatial structure of infinite-dimensional frequencies. As a direct consequence, we prove two main results: 1. The existence of infinitely many almost-periodic solutions; 2. The boundedness of all solutions for the asymmetric oscillator, even when traditional twist integrals (e.g., <span><span>(1.5)</span></span>) vanish. This work unifies periodic/quasi-periodic boundedness theories and extends them to the almost-periodic regime, resolving long-standing limitations in planar Hamiltonian systems with asymmetric potentials.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113763\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007909\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007909","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类半线性非对称振子x′+ax+−bx−=p(t)解的有界性,其中p是具有无穷多个合理独立频率的实解析概周期函数。一个关键的贡献是在一个加权的diophantine型非共振条件下,发展了平面近周期映射的一个新的范式定理(1.7)。与之前依赖扭曲条件或空间平均的方法不同,我们的框架通过利用无限维频率的空间结构消除了几何约束。作为直接结果,我们证明了两个主要结果:无穷多个概周期解的存在性;2. 非对称振子的所有解的有界性,即使传统的扭转积分(例如,(1.5))消失。这项工作统一了周期/准周期有界性理论,并将其扩展到近周期状态,解决了具有不对称势的平面哈密顿系统长期存在的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The boundedness of almost-periodic oscillators with asymmetric potentials via normal form theorem
This paper investigates the boundedness of solutions for the semilinear asymmetric oscillatorx¨+ax+bx=p(t), where p is real analytic and almost-periodic function with infinitely many rationally independent frequencies. A key contribution is the development of a novel normal form theorem for planar almost-periodic mappings under a weighted Diophantine-type nonresonance condition (1.7). Unlike prior approaches relying on twist conditions or spatial averaging, our framework eliminates geometric constraints by leveraging the spatial structure of infinite-dimensional frequencies. As a direct consequence, we prove two main results: 1. The existence of infinitely many almost-periodic solutions; 2. The boundedness of all solutions for the asymmetric oscillator, even when traditional twist integrals (e.g., (1.5)) vanish. This work unifies periodic/quasi-periodic boundedness theories and extends them to the almost-periodic regime, resolving long-standing limitations in planar Hamiltonian systems with asymmetric potentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信