{"title":"Stability of rarefaction wave for steady supersonic relativistic Euler flows past Lipschitz wedges","authors":"Min Ding , Yachun Li","doi":"10.1016/j.jde.2025.113752","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to studying two-dimensional steady supersonic relativistic Euler flows past a sharp corner or a bending wedge. When the vertex angle is larger than <em>π</em> and the wedge is a small perturbation of a convex rigid wall, we prove the global existence and stability of entropy solution including a large rarefaction wave under some small perturbations of the initial data and the slope of the boundary. Moreover, we obtain global non-relativistic limits of entropy solution as well as the asymptotic behavior of the solution as <span><math><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113752"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500779X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to studying two-dimensional steady supersonic relativistic Euler flows past a sharp corner or a bending wedge. When the vertex angle is larger than π and the wedge is a small perturbation of a convex rigid wall, we prove the global existence and stability of entropy solution including a large rarefaction wave under some small perturbations of the initial data and the slope of the boundary. Moreover, we obtain global non-relativistic limits of entropy solution as well as the asymptotic behavior of the solution as .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics