超声速相对论欧拉流通过利普希茨楔时稀疏波的稳定性

IF 2.3 2区 数学 Q1 MATHEMATICS
Min Ding , Yachun Li
{"title":"超声速相对论欧拉流通过利普希茨楔时稀疏波的稳定性","authors":"Min Ding ,&nbsp;Yachun Li","doi":"10.1016/j.jde.2025.113752","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to studying two-dimensional steady supersonic relativistic Euler flows past a sharp corner or a bending wedge. When the vertex angle is larger than <em>π</em> and the wedge is a small perturbation of a convex rigid wall, we prove the global existence and stability of entropy solution including a large rarefaction wave under some small perturbations of the initial data and the slope of the boundary. Moreover, we obtain global non-relativistic limits of entropy solution as well as the asymptotic behavior of the solution as <span><math><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113752"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of rarefaction wave for steady supersonic relativistic Euler flows past Lipschitz wedges\",\"authors\":\"Min Ding ,&nbsp;Yachun Li\",\"doi\":\"10.1016/j.jde.2025.113752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to studying two-dimensional steady supersonic relativistic Euler flows past a sharp corner or a bending wedge. When the vertex angle is larger than <em>π</em> and the wedge is a small perturbation of a convex rigid wall, we prove the global existence and stability of entropy solution including a large rarefaction wave under some small perturbations of the initial data and the slope of the boundary. Moreover, we obtain global non-relativistic limits of entropy solution as well as the asymptotic behavior of the solution as <span><math><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113752\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500779X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500779X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维稳定超声速相对论欧拉流经过尖角或弯曲楔的问题。当顶点角大于π且楔形是凸刚性壁的小扰动时,我们证明了在初始数据和边界斜率的小扰动下包含大稀疏波的熵解的全局存在性和稳定性。此外,我们还得到了熵解的全局非相对论性极限以及解在x→+∞时的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of rarefaction wave for steady supersonic relativistic Euler flows past Lipschitz wedges
This paper is devoted to studying two-dimensional steady supersonic relativistic Euler flows past a sharp corner or a bending wedge. When the vertex angle is larger than π and the wedge is a small perturbation of a convex rigid wall, we prove the global existence and stability of entropy solution including a large rarefaction wave under some small perturbations of the initial data and the slope of the boundary. Moreover, we obtain global non-relativistic limits of entropy solution as well as the asymptotic behavior of the solution as x+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信