{"title":"用Dirichlet特征值的一半重构Schrödinger算子","authors":"Xinya Yang , Guangsheng Wei","doi":"10.1016/j.jde.2025.113747","DOIUrl":null,"url":null,"abstract":"<div><div>We present a method for reconstructing the potential of a one-dimensional Schrödinger operator in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> using half of the Dirichlet-Dirichlet spectrum, combined with the potential known a priori on <span><math><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. This problem relates to the uniqueness theorem due to Gesztesy and Simon <span><span>[2]</span></span> concerning inverse eigenvalue problems with mixed given data. The basic idea is to establish an appropriate functional equation, which enables us to propose a method for recovering the potential in this type of inverse problem. Additionally, we provide a necessary and sufficient condition for the existence of a solution to this problem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113747"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of Schrödinger operators by half of the Dirichlet eigenvalues\",\"authors\":\"Xinya Yang , Guangsheng Wei\",\"doi\":\"10.1016/j.jde.2025.113747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a method for reconstructing the potential of a one-dimensional Schrödinger operator in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> using half of the Dirichlet-Dirichlet spectrum, combined with the potential known a priori on <span><math><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. This problem relates to the uniqueness theorem due to Gesztesy and Simon <span><span>[2]</span></span> concerning inverse eigenvalue problems with mixed given data. The basic idea is to establish an appropriate functional equation, which enables us to propose a method for recovering the potential in this type of inverse problem. Additionally, we provide a necessary and sufficient condition for the existence of a solution to this problem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113747\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007740\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007740","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Reconstruction of Schrödinger operators by half of the Dirichlet eigenvalues
We present a method for reconstructing the potential of a one-dimensional Schrödinger operator in using half of the Dirichlet-Dirichlet spectrum, combined with the potential known a priori on . This problem relates to the uniqueness theorem due to Gesztesy and Simon [2] concerning inverse eigenvalue problems with mixed given data. The basic idea is to establish an appropriate functional equation, which enables us to propose a method for recovering the potential in this type of inverse problem. Additionally, we provide a necessary and sufficient condition for the existence of a solution to this problem.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics