用Dirichlet特征值的一半重构Schrödinger算子

IF 2.3 2区 数学 Q1 MATHEMATICS
Xinya Yang , Guangsheng Wei
{"title":"用Dirichlet特征值的一半重构Schrödinger算子","authors":"Xinya Yang ,&nbsp;Guangsheng Wei","doi":"10.1016/j.jde.2025.113747","DOIUrl":null,"url":null,"abstract":"<div><div>We present a method for reconstructing the potential of a one-dimensional Schrödinger operator in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> using half of the Dirichlet-Dirichlet spectrum, combined with the potential known a priori on <span><math><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. This problem relates to the uniqueness theorem due to Gesztesy and Simon <span><span>[2]</span></span> concerning inverse eigenvalue problems with mixed given data. The basic idea is to establish an appropriate functional equation, which enables us to propose a method for recovering the potential in this type of inverse problem. Additionally, we provide a necessary and sufficient condition for the existence of a solution to this problem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113747"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of Schrödinger operators by half of the Dirichlet eigenvalues\",\"authors\":\"Xinya Yang ,&nbsp;Guangsheng Wei\",\"doi\":\"10.1016/j.jde.2025.113747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a method for reconstructing the potential of a one-dimensional Schrödinger operator in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> using half of the Dirichlet-Dirichlet spectrum, combined with the potential known a priori on <span><math><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. This problem relates to the uniqueness theorem due to Gesztesy and Simon <span><span>[2]</span></span> concerning inverse eigenvalue problems with mixed given data. The basic idea is to establish an appropriate functional equation, which enables us to propose a method for recovering the potential in this type of inverse problem. Additionally, we provide a necessary and sufficient condition for the existence of a solution to this problem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113747\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007740\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007740","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用Dirichlet-Dirichlet谱的一半,结合[14,1]上已知的先验势,重建L2(0,1)中一维Schrödinger算子势的方法。这个问题涉及到Gesztesy和Simon[2]关于混合给定数据的特征值反问题的唯一性定理。其基本思想是建立一个合适的泛函方程,这使我们能够在这类逆问题中提出一种恢复势的方法。并给出了该问题解存在的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of Schrödinger operators by half of the Dirichlet eigenvalues
We present a method for reconstructing the potential of a one-dimensional Schrödinger operator in L2(0,1) using half of the Dirichlet-Dirichlet spectrum, combined with the potential known a priori on [14,1]. This problem relates to the uniqueness theorem due to Gesztesy and Simon [2] concerning inverse eigenvalue problems with mixed given data. The basic idea is to establish an appropriate functional equation, which enables us to propose a method for recovering the potential in this type of inverse problem. Additionally, we provide a necessary and sufficient condition for the existence of a solution to this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信