具有完全滑移边界条件的平稳和非平稳Bingham问题的h2 -正则性

IF 2.3 2区 数学 Q1 MATHEMATICS
Takeshi Fukao , Takahito Kashiwabara
{"title":"具有完全滑移边界条件的平稳和非平稳Bingham问题的h2 -正则性","authors":"Takeshi Fukao ,&nbsp;Takahito Kashiwabara","doi":"10.1016/j.jde.2025.113739","DOIUrl":null,"url":null,"abstract":"<div><div><span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-spatial regularity of stationary and non-stationary problems for Bingham fluids formulated with the pseudo-stress tensor is discussed. The problem is mathematically described by an elliptic or parabolic variational inequality of the second kind, to which weak solvability in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> is well known. However, higher regularity up to the boundary in a bounded smooth domain seems to remain open. This paper indeed shows such <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-regularity if the problems are supplemented with the so-called perfect slip boundary condition and if the yield stress vanishes on the boundary. For the stationary Bingham–Stokes problem, the key of the proof lies in a priori estimates for a regularized problem avoiding investigation of higher pressure regularity, which seems difficult to get in the presence of a singular diffusion term. The <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-regularity for the stationary case is then directly applied to establish strong solvability of the non-stationary Bingham–Navier–Stokes problem, based on discretization in time and on the truncation of the nonlinear convection term.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113739"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H2-regularity for stationary and non-stationary Bingham problems with perfect slip boundary condition\",\"authors\":\"Takeshi Fukao ,&nbsp;Takahito Kashiwabara\",\"doi\":\"10.1016/j.jde.2025.113739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-spatial regularity of stationary and non-stationary problems for Bingham fluids formulated with the pseudo-stress tensor is discussed. The problem is mathematically described by an elliptic or parabolic variational inequality of the second kind, to which weak solvability in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> is well known. However, higher regularity up to the boundary in a bounded smooth domain seems to remain open. This paper indeed shows such <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-regularity if the problems are supplemented with the so-called perfect slip boundary condition and if the yield stress vanishes on the boundary. For the stationary Bingham–Stokes problem, the key of the proof lies in a priori estimates for a regularized problem avoiding investigation of higher pressure regularity, which seems difficult to get in the presence of a singular diffusion term. The <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-regularity for the stationary case is then directly applied to establish strong solvability of the non-stationary Bingham–Navier–Stokes problem, based on discretization in time and on the truncation of the nonlinear convection term.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113739\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007661\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007661","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

讨论了用拟应力张量表示的Bingham流体稳态和非稳态问题的h2 -空间正则性。该问题在数学上由第二类椭圆型或抛物型变分不等式描述,其在Sobolev空间H1中的弱可解性是众所周知的。然而,在有界光滑域的边界处,更高的正则性似乎保持开放。在补充了所谓的完美滑移边界条件和边界上屈服应力消失的情况下,本文确实显示了这种h2 -规律性。对于平稳Bingham-Stokes问题,证明的关键在于对正则化问题的先验估计,避免了在存在奇异扩散项时难以得到的高压正则性的研究。然后直接应用平稳情况下的h2 -正则性,建立了基于时间离散化和非线性对流项截断的非平稳Bingham-Navier-Stokes问题的强可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H2-regularity for stationary and non-stationary Bingham problems with perfect slip boundary condition
H2-spatial regularity of stationary and non-stationary problems for Bingham fluids formulated with the pseudo-stress tensor is discussed. The problem is mathematically described by an elliptic or parabolic variational inequality of the second kind, to which weak solvability in the Sobolev space H1 is well known. However, higher regularity up to the boundary in a bounded smooth domain seems to remain open. This paper indeed shows such H2-regularity if the problems are supplemented with the so-called perfect slip boundary condition and if the yield stress vanishes on the boundary. For the stationary Bingham–Stokes problem, the key of the proof lies in a priori estimates for a regularized problem avoiding investigation of higher pressure regularity, which seems difficult to get in the presence of a singular diffusion term. The H2-regularity for the stationary case is then directly applied to establish strong solvability of the non-stationary Bingham–Navier–Stokes problem, based on discretization in time and on the truncation of the nonlinear convection term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信