{"title":"基于最优运输的度量空间ABP估计","authors":"Bang-Xian Han","doi":"10.1016/j.jde.2025.113757","DOIUrl":null,"url":null,"abstract":"<div><div>By using optimal transport theory, we establish a sharp Alexandroff–Bakelman–Pucci (ABP) type estimate on metric measure spaces with synthetic Riemannian Ricci curvature lower bounds, and prove some geometric and functional inequalities including a functional ABP estimate. Our result not only extends the border of ABP estimate, but also provides an effective substitution of Jacobi fields computation in the non-smooth framework, which has potential applications to many problems in non-smooth geometric analysis.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113757"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ABP estimate on metric measure spaces via optimal transport\",\"authors\":\"Bang-Xian Han\",\"doi\":\"10.1016/j.jde.2025.113757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By using optimal transport theory, we establish a sharp Alexandroff–Bakelman–Pucci (ABP) type estimate on metric measure spaces with synthetic Riemannian Ricci curvature lower bounds, and prove some geometric and functional inequalities including a functional ABP estimate. Our result not only extends the border of ABP estimate, but also provides an effective substitution of Jacobi fields computation in the non-smooth framework, which has potential applications to many problems in non-smooth geometric analysis.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"451 \",\"pages\":\"Article 113757\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007843\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007843","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
ABP estimate on metric measure spaces via optimal transport
By using optimal transport theory, we establish a sharp Alexandroff–Bakelman–Pucci (ABP) type estimate on metric measure spaces with synthetic Riemannian Ricci curvature lower bounds, and prove some geometric and functional inequalities including a functional ABP estimate. Our result not only extends the border of ABP estimate, but also provides an effective substitution of Jacobi fields computation in the non-smooth framework, which has potential applications to many problems in non-smooth geometric analysis.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics