Journal of Differential Equations最新文献

筛选
英文 中文
On the Emden-Fowler equation type involving double critical growth 关于涉及双临界增长的埃姆登-福勒方程类型
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-14 DOI: 10.1016/j.jde.2024.11.011
Luiz Fernando de Oliveira Faria , Aldo Henrique de Souza Medeiros , Jeferson Camilo Silva
{"title":"On the Emden-Fowler equation type involving double critical growth","authors":"Luiz Fernando de Oliveira Faria ,&nbsp;Aldo Henrique de Souza Medeiros ,&nbsp;Jeferson Camilo Silva","doi":"10.1016/j.jde.2024.11.011","DOIUrl":"10.1016/j.jde.2024.11.011","url":null,"abstract":"<div><div>In this article, we investigate a class of nonlinear elliptic equations driven by the <em>p</em>-Laplacian operator in the entire space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, known as the Emden-Fowler equation type. The complexity of the problem arises from the interplay of two distinct critical growth phenomena, characterized by both Sobolev and Hardy senses. We explore the existence of positive radial solutions, with the proof relying on variational methods. Due to multiple critical nonlinearities, the Mountain Pass Lemma does not yield critical points but only Palais-Smale sequences. The primary challenge lies in the asymptotic competition among the energies carried by these multiple critical nonlinearities.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1861-1880"},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global classical solutions of free boundary problem of compressible Navier–Stokes equations with degenerate viscosity 具有退化粘度的可压缩纳维-斯托克斯方程自由边界问题的全局经典解
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-14 DOI: 10.1016/j.jde.2024.11.004
Andrew Yang , Xu Zhao , Wenshu Zhou
{"title":"Global classical solutions of free boundary problem of compressible Navier–Stokes equations with degenerate viscosity","authors":"Andrew Yang ,&nbsp;Xu Zhao ,&nbsp;Wenshu Zhou","doi":"10.1016/j.jde.2024.11.004","DOIUrl":"10.1016/j.jde.2024.11.004","url":null,"abstract":"<div><div>This paper concerns with the one dimensional compressible isentropic Navier–Stokes equations with a free boundary separating fluid and vacuum when the viscosity coefficient depends on the density. Precisely, the pressure <em>P</em> and the viscosity coefficient <em>μ</em> are assumed to be proportional to <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>γ</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>θ</mi></mrow></msup></math></span> respectively, where <em>ρ</em> is the density, and <em>γ</em> and <em>θ</em> are constants. We establish the unique solvability in the framework of global classical solutions for this problem when <span><math><mi>γ</mi><mo>≥</mo><mi>θ</mi><mo>&gt;</mo><mn>1</mn></math></span>. Since the previous results on this topic are limited to the case when <span><math><mi>θ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, the result in this paper fills in the gap for <span><math><mi>θ</mi><mo>&gt;</mo><mn>1</mn></math></span>. Note that the key estimate is to show that the density has a positive lower bound and the new ingredient of the proof relies on the study of the quasilinear parabolic equation for the viscosity coefficient by reducing the nonlocal terms in order to apply the comparison principle.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1837-1860"},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal convergence rate of the vanishing shear viscosity limit for a compressible fluid-particle interaction system 可压缩流体-粒子相互作用系统剪切粘度消失极限的最佳收敛速率
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-12 DOI: 10.1016/j.jde.2024.10.033
Bingyuan Huang , Yingshan Chen , Limei Zhu
{"title":"Optimal convergence rate of the vanishing shear viscosity limit for a compressible fluid-particle interaction system","authors":"Bingyuan Huang ,&nbsp;Yingshan Chen ,&nbsp;Limei Zhu","doi":"10.1016/j.jde.2024.10.033","DOIUrl":"10.1016/j.jde.2024.10.033","url":null,"abstract":"<div><div>We consider the initial boundary value problem for the compressible fluid-particle interaction system with cylindrical symmetry. We derive explicit Prandtl type boundary layer equations and prove the global in time stability of the boundary layer profile together with the optimal convergence rate when the shear viscosity <span><math><mi>μ</mi><mo>=</mo><mi>κ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> goes to zero without any smallness assumption on the initial and boundary data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1792-1823"},"PeriodicalIF":2.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traveling waves to a chemotaxis-growth model with Allee effect 带有阿利效应的趋化-生长模型的游波
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-06 DOI: 10.1016/j.jde.2024.10.040
Qi Qiao , Xiang Zhang
{"title":"Traveling waves to a chemotaxis-growth model with Allee effect","authors":"Qi Qiao ,&nbsp;Xiang Zhang","doi":"10.1016/j.jde.2024.10.040","DOIUrl":"10.1016/j.jde.2024.10.040","url":null,"abstract":"<div><div>For a chemotaxis-growth model with Allee effect, whose chemotactic sensitivity and diffusion coefficient of the chemical substance are both small, we prove existence of the positive traveling waves with slow wave speeds and their unstability and asymptotic stability with shift depending on the choice of the parameters of the system.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1747-1770"},"PeriodicalIF":2.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the well-posedness of boundary value problems for higher order Dirac operators in Rm 论 Rm 中高阶狄拉克算子边界值问题的好求性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-06 DOI: 10.1016/j.jde.2024.10.036
Daniel Alfonso Santiesteban , Ricardo Abreu Blaya , Juan Bory Reyes
{"title":"On the well-posedness of boundary value problems for higher order Dirac operators in Rm","authors":"Daniel Alfonso Santiesteban ,&nbsp;Ricardo Abreu Blaya ,&nbsp;Juan Bory Reyes","doi":"10.1016/j.jde.2024.10.036","DOIUrl":"10.1016/j.jde.2024.10.036","url":null,"abstract":"<div><div>Clifford analysis offers suited framework for a unified treatment of higher-dimensional phenomena. This paper is concerned with boundary value problems for higher order Dirac operators, which are directly related to the Lamé-Navier and iterated Laplace operators. The conditioning of the problems upon the boundaries of the considered domains ensures their well-posedness in the sense of Hadamard.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1729-1746"},"PeriodicalIF":2.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine profiles of positive solutions for some nonlocal dispersal equations 某些非局部分散方程正解的精细轮廓
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-06 DOI: 10.1016/j.jde.2024.10.038
Yan-Hua Xing, Jian-Wen Sun
{"title":"Fine profiles of positive solutions for some nonlocal dispersal equations","authors":"Yan-Hua Xing,&nbsp;Jian-Wen Sun","doi":"10.1016/j.jde.2024.10.038","DOIUrl":"10.1016/j.jde.2024.10.038","url":null,"abstract":"<div><div>In this paper, we study the positive solutions of some nonlocal dispersal equations. We are interested in the new profiles of positive solutions with different reaction functions when spatial degeneracy occurs. It is shown that there can exist six kinds of asymptotic profiles for the nonlocal dispersal problem. Our study also provides the precise effect of reaction functions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1771-1791"},"PeriodicalIF":2.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and regularity of ultradifferentiable periodic solutions to certain vector fields 某些矢量场的超微分周期解的存在性和正则性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-05 DOI: 10.1016/j.jde.2024.10.042
Rafael B. Gonzalez
{"title":"Existence and regularity of ultradifferentiable periodic solutions to certain vector fields","authors":"Rafael B. Gonzalez","doi":"10.1016/j.jde.2024.10.042","DOIUrl":"10.1016/j.jde.2024.10.042","url":null,"abstract":"<div><div>We consider a class of first-order partial differential operators, acting on the space of ultradifferentiable periodic functions, and we describe their range by using the following conditions on the coefficients of the operators: the connectedness of certain sublevel sets, the dimension of the subspace generated by the imaginary part of the coefficients, and Diophantine conditions. In addition, we show that these properties are also linked to the regularity of the solutions. The results extend previous ones in Gevrey classes.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1696-1728"},"PeriodicalIF":2.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Navier-Stokes equations on manifolds with boundary 有边界流形上的纳维-斯托克斯方程
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-05 DOI: 10.1016/j.jde.2024.10.030
Yuanzhen Shao , Gieri Simonett , Mathias Wilke
{"title":"The Navier-Stokes equations on manifolds with boundary","authors":"Yuanzhen Shao ,&nbsp;Gieri Simonett ,&nbsp;Mathias Wilke","doi":"10.1016/j.jde.2024.10.030","DOIUrl":"10.1016/j.jde.2024.10.030","url":null,"abstract":"<div><div>We consider the motion of an incompressible viscous fluid on a compact Riemannian manifold <span><math><mi>M</mi></math></span> with boundary. The motion on <span><math><mi>M</mi></math></span> is modeled by the incompressible Navier-Stokes equations, and the fluid is subject to pure or partial slip boundary conditions of Navier type on <span><math><mo>∂</mo><mi>M</mi></math></span>. We establish existence and uniqueness of strong as well as weak (variational) solutions for initial data in critical spaces. Moreover, we show that the set of equilibria consists of Killing vector fields on <span><math><mi>M</mi></math></span> that satisfy corresponding boundary conditions, and we prove that all equilibria are (locally) stable. In case <span><math><mi>M</mi></math></span> is two-dimensional we show that solutions with divergence free initial condition in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>;</mo><mi>T</mi><mi>M</mi><mo>)</mo></math></span> exist globally and converge to an equilibrium exponentially fast.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1602-1659"},"PeriodicalIF":2.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curved fronts for a Belousov-Zhabotinskii system in exterior domains 贝洛索夫-扎博金斯基系统在外部域中的曲线前沿
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-05 DOI: 10.1016/j.jde.2024.10.043
Bang-Sheng Han, Meng-Xue Chang, Hong-Lei Wei, Yinghui Yang
{"title":"Curved fronts for a Belousov-Zhabotinskii system in exterior domains","authors":"Bang-Sheng Han,&nbsp;Meng-Xue Chang,&nbsp;Hong-Lei Wei,&nbsp;Yinghui Yang","doi":"10.1016/j.jde.2024.10.043","DOIUrl":"10.1016/j.jde.2024.10.043","url":null,"abstract":"<div><div>This paper is concerned with curved fronts for Belousov-Zhabotinskii reaction-diffusion system in external domains <span><math><mi>Ω</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>﹨</mo><mi>K</mi></math></span> with a compact obstacle <em>K</em> and aims to investigate the large time dynamics of an entire solution emanating from a pyramidal traveling wave. By constructing several super- and sub-solutions with desirable characteristics, some favorable properties of the pyramidal traveling wave are obtained. We show that by providing propagation completely of the entire solution, the pyramidal traveling wave will converge to the same shape of the pyramidal traveling wave after far behind the obstacle.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1660-1695"},"PeriodicalIF":2.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Necessary and sufficient conditions for the solvability of a singular Dirichlet boundary problem for the Sturm-Liouville equation of general form 一般形式 Sturm-Liouville 方程的奇异 Dirichlet 边界问题可解性的必要条件和充分条件
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-11-04 DOI: 10.1016/j.jde.2024.10.023
N. Chernyavskaya , L. Shuster
{"title":"Necessary and sufficient conditions for the solvability of a singular Dirichlet boundary problem for the Sturm-Liouville equation of general form","authors":"N. Chernyavskaya ,&nbsp;L. Shuster","doi":"10.1016/j.jde.2024.10.023","DOIUrl":"10.1016/j.jde.2024.10.023","url":null,"abstract":"<div><div>We consider the boundary problem<span><span><span>(1)</span><span><math><mrow><mo>−</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo></mrow></math></span></span></span><span><span><span>(2)</span><span><math><mrow><munder><mi>lim</mi><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></math></span></span></span> under the following conditions:<ul><li><span>1)</span><span><div><span><math><mi>r</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>;</div></span></li><li><span>2)</span><span><div>equation <span><span>(1)</span></span> is correctly solvable in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></span></li></ul> We obtain necessary and sufficient requirements for the functions <em>r</em> and <em>q</em> under which, regardless of the choice of a function <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, the solution <span><math><mi>y</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of equation <span><span>(1)</span></span> satisfies <span><span>(2)</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1564-1601"},"PeriodicalIF":2.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信