T.J. Doumatè , J. Kotounou , L.A. Leadi , R.B. Salako
{"title":"Dynamics of classical solutions to a diffusive epidemic model with varying population demographics","authors":"T.J. Doumatè , J. Kotounou , L.A. Leadi , R.B. Salako","doi":"10.1016/j.jde.2024.09.058","DOIUrl":"10.1016/j.jde.2024.09.058","url":null,"abstract":"<div><div>We study the asymptotic dynamics of solutions to a diffusive epidemic model with varying population dynamics. The large-time behavior of solutions is completely described in spatially homogeneous environments. When the environment is spatially heterogeneous, it is shown that there exist two critical numbers <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>≤</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo><</mo><mo>∞</mo></math></span> such that if the ratio <span><math><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>I</mi></mrow></msub></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></mfrac></math></span> of the infected population diffusion rate and the susceptible population rate either exceeds <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> or is less than <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span>, then the epidemic model has an endemic equilibrium (EE) solution if and only if the basic reproduction number (BRN) exceeds one. The unique EE is non-degenerate if <span><math><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>I</mi></mrow></msub></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></mfrac><mo>≥</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Furthermore, results on the global dynamics of solutions are established when <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mn>1</mn></math></span>. Our results shed some light on the differences on disease predictions for constant total population size models versus varying population size models. Results on the asymptotic profiles of the EEs for small population diffusion rates are also established.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William R. Green , Connor Lane , Benjamin Lyons , Shyam Ravishankar , Aden Shaw
{"title":"The massless Dirac equation in three dimensions: Dispersive estimates and zero energy obstructions","authors":"William R. Green , Connor Lane , Benjamin Lyons , Shyam Ravishankar , Aden Shaw","doi":"10.1016/j.jde.2024.10.005","DOIUrl":"10.1016/j.jde.2024.10.005","url":null,"abstract":"<div><div>We investigate dispersive estimates for the massless three dimensional Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies a <span><math><msup><mrow><mo>〈</mo><mi>t</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> decay rate as an operator from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> regardless of the existence of zero energy eigenfunctions. We also show this decay rate may be improved to <span><math><msup><mrow><mo>〈</mo><mi>t</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn><mo>−</mo><mi>γ</mi></mrow></msup></math></span> for any <span><math><mn>0</mn><mo>≤</mo><mi>γ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> at the cost of spatial weights. This estimate, along with the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> conservation law allows one to deduce a family of Strichartz estimates in the case of a threshold eigenvalue. We classify the structure of threshold obstructions as being composed of zero energy eigenfunctions. Finally, we show the Dirac evolution is bounded for all time with minimal requirements on the decay of the potential and smoothness of initial data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spreading properties for a predator-prey system with nonlocal dispersal and climate change","authors":"Rong Zhou, Shi-Liang Wu","doi":"10.1016/j.jde.2024.09.057","DOIUrl":"10.1016/j.jde.2024.09.057","url":null,"abstract":"<div><div>In this paper, we investigate the spreading properties for a predator-prey system with nonlocal dispersal and climate change. We are concerned with the case when the prey grow relatively rapidly at one side of the habitat and grow relatively slowly at another side of the habitat. We are interested in the effect of the climate change on the spreading speed of the predator and prey. In the case where the predator is faster than the prey, we show that the predator and the prey have the same leftward spreading speed and the same rightward spreading speed, respectively, which depend on <em>c</em>, the climate change speed, and <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mo>±</mo><mo>∞</mo><mo>)</mo></math></span>, the maximum and minimum speeds of the prey without predator. While in the case where the prey is faster than the predator, we find that the solution can form a multi-layer wave and the two species have different leftward spreading speeds and different rightward spreading speeds, which depend on <em>c</em>, <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mo>±</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mo>±</mo><mo>∞</mo><mo>)</mo></math></span>, the maximum and minimum speeds of the predator when the density of the prey attains its maximum and minimum capacity.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global existence of strong solutions to the compressible magnetohydrodynamic equations with large initial data and vacuum in R2","authors":"Xue Wang, Xiaojing Xu","doi":"10.1016/j.jde.2024.09.056","DOIUrl":"10.1016/j.jde.2024.09.056","url":null,"abstract":"<div><div>This paper concerns the Cauchy problem to the compressible magnetohydrodynamic equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with the constant state of density at far field being vacuum or nonvacuum. Under the conditions that the adiabatic constant <span><math><mi>γ</mi><mo>></mo><mn>1</mn></math></span>, the shear viscosity coefficient <em>μ</em> is a positive constant, and the bulk one <span><math><mi>λ</mi><mo>(</mo><mi>ρ</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> with <span><math><mi>β</mi><mo>></mo><mn>4</mn><mo>/</mo><mn>3</mn></math></span>, we establish the global existence and uniqueness of strong solutions. In particular, the initial data can be arbitrarily large and the density is allowed to vanish initially. These results generalize and improve previous ones by Huang-Li (2022) and Jiu-Wang-Xin (2018) for compressible Navier-Stokes equations. This paper introduces some key weighted estimates on <em>H</em> and presents some delicate analysis to exploit the decay properties of solutions due to the strong coupling and interplay interaction.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto de A. Capistrano–Filho , Thiago Yukio Tanaka
{"title":"Controls insensitizing the norm of solution of a Schrödinger type system with mixed dispersion","authors":"Roberto de A. Capistrano–Filho , Thiago Yukio Tanaka","doi":"10.1016/j.jde.2024.09.054","DOIUrl":"10.1016/j.jde.2024.09.054","url":null,"abstract":"<div><div>The main goal of this manuscript is to prove the existence of insensitizing controls for the fourth-order dispersive nonlinear Schrödinger equation with cubic nonlinearity. To obtain the main result we prove a null controllability property for a coupled fourth-order Schrödinger cascade type system with zero-order coupling which is equivalent to the insensitizing control problem. Precisely, employing a new Carleman estimates, we first obtain a null controllability result for the linearized system around zero, and then the null controllability for the nonlinear case is extended using an inverse mapping theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minkowski problems arise from sub-linear elliptic equations","authors":"Qiuyi Dai, Xing Yi","doi":"10.1016/j.jde.2024.09.023","DOIUrl":"10.1016/j.jde.2024.09.023","url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> be a bounded convex domain with boundary ∂Ω and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the unit outer vector normal to ∂Ω at <em>x</em>. Let <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> be the unit sphere in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Then, the Gauss mapping <span><math><mi>g</mi><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, defined almost everywhere with respect to surface measure <em>σ</em>, is given by <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. For <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></math></span>, it is well known that the following problem of sub-linear elliptic equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>φ</mi><mo>=</mo><msup><mrow><mi>φ</mi></mrow><mrow><mi>β</mi></mrow></msup><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>></mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></math></span></span></span> has a unique solution. Moreover, it is easy to prove that each component of <span><math><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is well-defined almost everywhere on ∂Ω with respect to <em>σ</em>. Therefore, we can assign a measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> such that <span><math><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi><mo>)</mo></math></span>. That is<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></munder><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><mi>f</mi><mo>(</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi></math></span></span></span> for every <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>S</mi></mrow>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large deviation principle for multi-scale fully local monotone stochastic dynamical systems with multiplicative noise","authors":"Wei Hong, Wei Liu, Luhan Yang","doi":"10.1016/j.jde.2024.09.059","DOIUrl":"10.1016/j.jde.2024.09.059","url":null,"abstract":"<div><div>This paper is devoted to proving the small noise asymptotic behavior, particularly large deviation principle, for multi-scale stochastic dynamical systems with fully local monotone coefficients driven by multiplicative noise. The main techniques rely on the weak convergence approach, the theory of pseudo-monotone operators and the time discretization scheme. The main results derived in this paper have broad applications to various multi-scale models, where the slow component could be such as stochastic porous medium equations, stochastic Cahn-Hilliard equations and stochastic 2D Liquid crystal equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence of solutions to the Gaussian dual Minkowski problem","authors":"Yibin Feng , Yuanyuan Li , Lei Xu","doi":"10.1016/j.jde.2024.09.050","DOIUrl":"10.1016/j.jde.2024.09.050","url":null,"abstract":"<div><div>Gaussian dual curvature measure is introduced and Gaussian dual Minkowski problem is studied. This problem amounts to solving a class of Monge-Ampère type equations on the unit sphere. Existence and uniqueness of solutions to the relevant Monge-Ampère type equations are obtained in the smooth category when <span><math><mi>q</mi><mo>≤</mo><mn>0</mn></math></span>, respectively. For <span><math><mi>q</mi><mo><</mo><mn>0</mn></math></span>, a complete solution to existence part of the Gaussian dual Minkowski problem is presented. For the case of <span><math><mi>q</mi><mo>=</mo><mn>0</mn></math></span>, a weak solution to the Monge-Ampère type equation related to this problem is provided when given measure has the density <em>f</em> which is sandwiched between two positive constants belonging to the interval 0 to 1.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Schrödinger operator with a complex steplike potential","authors":"Tho Nguyen Duc","doi":"10.1016/j.jde.2024.09.055","DOIUrl":"10.1016/j.jde.2024.09.055","url":null,"abstract":"<div><div>The purpose of this article is to study pseudospectral properties of the one-dimensional Schrödinger operator perturbed by a complex steplike potential. By constructing the resolvent kernel, we show that the pseudospectrum of this operator is trivial if and only if the imaginary part of the potential is constant. As a by-product, a new method to obtain a sharp resolvent estimate is developed, answering a concern of Henry and Krejčiřík, and a way to construct an optimal pseudomode is discovered, answering a concern of Krejčiřík and Siegl. This article also analyzes the impact of a complex point interaction on the spectrum and the resolvent norm.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global normalizations for centers of planar vector fields","authors":"C. Grotta-Ragazzo , F.J.S. Nascimento","doi":"10.1016/j.jde.2024.09.053","DOIUrl":"10.1016/j.jde.2024.09.053","url":null,"abstract":"<div><div>This paper addresses a question posed by Carmen Chicone and proves that an analytic vector field with a non-degenerate global center can be transformed into a classical Newtonian equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mo>−</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div><div>Additionally, we establish a global Poincaré normal form for planar centers. We also demonstrate the global analytic integrability of the equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo></math></span>, where <span><math><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>v</mi><mo>)</mo></math></span>, under some additional conditions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}