凹凸非线性耦合波动方程的周期解

IF 2.4 2区 数学 Q1 MATHEMATICS
Jianhua Liu, Jiayu Deng, Shuguan Ji
{"title":"凹凸非线性耦合波动方程的周期解","authors":"Jianhua Liu,&nbsp;Jiayu Deng,&nbsp;Shuguan Ji","doi":"10.1016/j.jde.2025.113584","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we show that the coupled wave equations possess infinitely many time-periodic solutions. The nonlinearities are the combination of a convex term and a concave term, and we mainly focus on the effect of the concave term on the solution structure of the periodic-Dirichlet wave equations. The proof is based on the detailed analysis for the spectrum structure of the corresponding linear operator, and we obtain the existence and multiplicity of time-periodic solutions to our problem by critical point theory and approximation arguments.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113584"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solutions for the coupled wave equations with concave-convex nonlinearities\",\"authors\":\"Jianhua Liu,&nbsp;Jiayu Deng,&nbsp;Shuguan Ji\",\"doi\":\"10.1016/j.jde.2025.113584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we show that the coupled wave equations possess infinitely many time-periodic solutions. The nonlinearities are the combination of a convex term and a concave term, and we mainly focus on the effect of the concave term on the solution structure of the periodic-Dirichlet wave equations. The proof is based on the detailed analysis for the spectrum structure of the corresponding linear operator, and we obtain the existence and multiplicity of time-periodic solutions to our problem by critical point theory and approximation arguments.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"445 \",\"pages\":\"Article 113584\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006114\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006114","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们证明了耦合波动方程具有无限多个时间周期解。非线性是凸项和凹项的组合,我们主要研究凹项对周期性狄利克雷波动方程解结构的影响。在详细分析相应线性算子谱结构的基础上,利用临界点理论和近似论证,得到了该问题时间周期解的存在性和多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic solutions for the coupled wave equations with concave-convex nonlinearities
In this work, we show that the coupled wave equations possess infinitely many time-periodic solutions. The nonlinearities are the combination of a convex term and a concave term, and we mainly focus on the effect of the concave term on the solution structure of the periodic-Dirichlet wave equations. The proof is based on the detailed analysis for the spectrum structure of the corresponding linear operator, and we obtain the existence and multiplicity of time-periodic solutions to our problem by critical point theory and approximation arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信