Camassa-Holm孤子气体的大空间大时间渐近性

IF 2.4 2区 数学 Q1 MATHEMATICS
Xianguo Geng , Dedi Yan , Minxin Jia
{"title":"Camassa-Holm孤子气体的大空间大时间渐近性","authors":"Xianguo Geng ,&nbsp;Dedi Yan ,&nbsp;Minxin Jia","doi":"10.1016/j.jde.2025.113581","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the large-space and large-time asymptotic behaviors of the soliton gas associated with the Camassa-Holm equation. Utilizing the nonlinear steepest descent method, we demonstrate that the soliton gas is slowly approaching an elliptic function with constant coefficients for <span><math><mi>y</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span>. In the regime <span><math><mi>t</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>, we establish a global large-time asymptotic description of the Camassa-Holm soliton gas. The half-plane <span><math><mo>{</mo><mo>(</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>−</mo><mo>∞</mo><mo>&lt;</mo><mi>y</mi><mo>&lt;</mo><mo>+</mo><mo>∞</mo><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> is divided into sharply separated regions with different asymptotics. To facilitate the large-time asymptotic analysis, we construct a series of <em>g</em>-functions. To reconstruct the solution, we control the behavior of <em>g</em>-functions when <span><math><mi>k</mi><mo>→</mo><mfrac><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span>. The relevant asymptotic sector exists only if the <em>g</em>-function exists, we categorize the values of <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> into two distinct cases and rigorously prove the existence of these <em>g</em>-functions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113581"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-space and large-time asymptotics of the Camassa-Holm soliton gas\",\"authors\":\"Xianguo Geng ,&nbsp;Dedi Yan ,&nbsp;Minxin Jia\",\"doi\":\"10.1016/j.jde.2025.113581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the large-space and large-time asymptotic behaviors of the soliton gas associated with the Camassa-Holm equation. Utilizing the nonlinear steepest descent method, we demonstrate that the soliton gas is slowly approaching an elliptic function with constant coefficients for <span><math><mi>y</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span>. In the regime <span><math><mi>t</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>, we establish a global large-time asymptotic description of the Camassa-Holm soliton gas. The half-plane <span><math><mo>{</mo><mo>(</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mo>−</mo><mo>∞</mo><mo>&lt;</mo><mi>y</mi><mo>&lt;</mo><mo>+</mo><mo>∞</mo><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> is divided into sharply separated regions with different asymptotics. To facilitate the large-time asymptotic analysis, we construct a series of <em>g</em>-functions. To reconstruct the solution, we control the behavior of <em>g</em>-functions when <span><math><mi>k</mi><mo>→</mo><mfrac><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span>. The relevant asymptotic sector exists only if the <em>g</em>-function exists, we categorize the values of <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> into two distinct cases and rigorously prove the existence of these <em>g</em>-functions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"444 \",\"pages\":\"Article 113581\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006084\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006084","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与Camassa-Holm方程相关的孤子气体的大空间和大时间渐近行为。利用非线性最陡下降法,我们证明了孤子气体在y→−∞时缓慢逼近常系数椭圆函数。在t→+∞区间,我们建立了Camassa-Holm孤子气体的全局大时渐近描述。将半平面{(y,t):−∞<y<+∞,t>;0}划分为具有不同渐近性的明显分离区域。为了便于大时间渐近分析,我们构造了一系列g函数。为了重建解,我们控制了k→i2和k→∞时g函数的行为。只有当g函数存在时,相关的渐近扇区才存在,我们将η1和η2的值划分为两种不同的情况,并严格证明了这两种g函数的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-space and large-time asymptotics of the Camassa-Holm soliton gas
We investigate the large-space and large-time asymptotic behaviors of the soliton gas associated with the Camassa-Holm equation. Utilizing the nonlinear steepest descent method, we demonstrate that the soliton gas is slowly approaching an elliptic function with constant coefficients for y. In the regime t+, we establish a global large-time asymptotic description of the Camassa-Holm soliton gas. The half-plane {(y,t):<y<+,t>0} is divided into sharply separated regions with different asymptotics. To facilitate the large-time asymptotic analysis, we construct a series of g-functions. To reconstruct the solution, we control the behavior of g-functions when ki2 and k. The relevant asymptotic sector exists only if the g-function exists, we categorize the values of η1 and η2 into two distinct cases and rigorously prove the existence of these g-functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信