{"title":"一类各向异性流动和对偶Orlicz - Christoffel-Minkowski型方程","authors":"Shanwei Ding, Guanghan Li","doi":"10.1016/j.jde.2025.113586","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the long-time existence and asymptotic behavior for a class of anisotropic non-homogeneous curvature flows without global forcing terms. By the stationary solutions of such anisotropic flows, we obtain existence results for a class of dual Orlicz Christoffel-Minkowski type problems, which is equivalent to solve the PDE <span><math><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>,</mo><mi>D</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>)</mo><mi>F</mi><mo>(</mo><mo>[</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>K</mi></mrow></msub><mi>I</mi><mo>]</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for a convex body <em>K</em>, where <em>D</em> is the covariant derivative with respect to the standard metric on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <em>I</em> is the unit matrix of order <em>n</em>. This result covers many previous known solutions to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> dual Minkowski problem, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> dual Christoffel-Minkowski problem, and dual Orlicz Minkowski problem etc. Meanwhile, the variational formula of some modified quermassintegrals and the corresponding prescribed area measure problem (Orlicz Christoffel-Minkowski type problem) are considered, and inequalities involving modified quermassintegrals are also derived. As corollary, this also provides a sufficient condition for the existence to the general prescribed curvature equation <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>κ</mi><mo>)</mo><mo>=</mo><mi>G</mi><mo>(</mo><mi>ν</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> raised in <span><span>[20]</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113586"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A type of anisotropic flows and dual Orlicz Christoffel-Minkowski type equations\",\"authors\":\"Shanwei Ding, Guanghan Li\",\"doi\":\"10.1016/j.jde.2025.113586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the long-time existence and asymptotic behavior for a class of anisotropic non-homogeneous curvature flows without global forcing terms. By the stationary solutions of such anisotropic flows, we obtain existence results for a class of dual Orlicz Christoffel-Minkowski type problems, which is equivalent to solve the PDE <span><math><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>,</mo><mi>D</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>)</mo><mi>F</mi><mo>(</mo><mo>[</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>K</mi></mrow></msub><mi>I</mi><mo>]</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for a convex body <em>K</em>, where <em>D</em> is the covariant derivative with respect to the standard metric on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <em>I</em> is the unit matrix of order <em>n</em>. This result covers many previous known solutions to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> dual Minkowski problem, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> dual Christoffel-Minkowski problem, and dual Orlicz Minkowski problem etc. Meanwhile, the variational formula of some modified quermassintegrals and the corresponding prescribed area measure problem (Orlicz Christoffel-Minkowski type problem) are considered, and inequalities involving modified quermassintegrals are also derived. As corollary, this also provides a sufficient condition for the existence to the general prescribed curvature equation <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>κ</mi><mo>)</mo><mo>=</mo><mi>G</mi><mo>(</mo><mi>ν</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> raised in <span><span>[20]</span></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"445 \",\"pages\":\"Article 113586\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006138\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006138","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了一类无全局强迫项的各向异性非齐次曲率流的长期存在性和渐近性态。通过这种各向异性流动的固定方案,我们获得的结果存在的双重Orlicz Christoffel-Minkowski类型问题,相当于解决PDE G F (x,英国,duke energy) ([D2uK + uKI]) = 1在Sn凸体K,其中D是协变导数在Sn标准度量,我是单位矩阵n。这个结果涵盖了许多先前已知的解决方案Lp双重闵可夫斯基问题,Lp双重Christoffel-Minkowski问题,对偶Orlicz Minkowski问题等。同时,考虑了一些修正的quermass积分的变分公式和相应的规定面积测度问题(Orlicz - Christoffel-Minkowski型问题),并推导了涉及修正quermass积分的不等式。作为推论,这也为[20]中提出的一般规定曲率方程F (κ)=G(ν,X)的存在性提供了充分条件。
A type of anisotropic flows and dual Orlicz Christoffel-Minkowski type equations
In this paper, we study the long-time existence and asymptotic behavior for a class of anisotropic non-homogeneous curvature flows without global forcing terms. By the stationary solutions of such anisotropic flows, we obtain existence results for a class of dual Orlicz Christoffel-Minkowski type problems, which is equivalent to solve the PDE on for a convex body K, where D is the covariant derivative with respect to the standard metric on and I is the unit matrix of order n. This result covers many previous known solutions to dual Minkowski problem, dual Christoffel-Minkowski problem, and dual Orlicz Minkowski problem etc. Meanwhile, the variational formula of some modified quermassintegrals and the corresponding prescribed area measure problem (Orlicz Christoffel-Minkowski type problem) are considered, and inequalities involving modified quermassintegrals are also derived. As corollary, this also provides a sufficient condition for the existence to the general prescribed curvature equation raised in [20].
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics