具有朗道势的非齐次不可压缩Navier-Stokes-Cahn-Hilliard系统的全局适定性

IF 2.4 2区 数学 Q1 MATHEMATICS
Li Fang , Rui Nei , Zhenhua Guo
{"title":"具有朗道势的非齐次不可压缩Navier-Stokes-Cahn-Hilliard系统的全局适定性","authors":"Li Fang ,&nbsp;Rui Nei ,&nbsp;Zhenhua Guo","doi":"10.1016/j.jde.2025.113585","DOIUrl":null,"url":null,"abstract":"<div><div>We study the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system in a bounded smooth domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, which describes the dynamics of nonhomogeneous incompressible two-phase viscous flows. We first give a blow-up criterion of local strong solution to the initial-boundary-value problem for the case of initial density away from zero. After establishing some key a priori with the help of the Landau Potential, we obtain the global existence and the decay-in-time of strong solution, provided that the initial datum <span><math><msub><mrow><mo>‖</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>∇</mi><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub></math></span> is suitably small. Precisely, we provide a systematic analysis of the Navier-Stokes-Cahn-Hilliard system through detailed a priori estimates, covering blow-up criterion, global existence and decay behavior of strong solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113585"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness of the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system with Landau Potential\",\"authors\":\"Li Fang ,&nbsp;Rui Nei ,&nbsp;Zhenhua Guo\",\"doi\":\"10.1016/j.jde.2025.113585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system in a bounded smooth domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, which describes the dynamics of nonhomogeneous incompressible two-phase viscous flows. We first give a blow-up criterion of local strong solution to the initial-boundary-value problem for the case of initial density away from zero. After establishing some key a priori with the help of the Landau Potential, we obtain the global existence and the decay-in-time of strong solution, provided that the initial datum <span><math><msub><mrow><mo>‖</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>∇</mi><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub></math></span> is suitably small. Precisely, we provide a systematic analysis of the Navier-Stokes-Cahn-Hilliard system through detailed a priori estimates, covering blow-up criterion, global existence and decay behavior of strong solutions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"445 \",\"pages\":\"Article 113585\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006126\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了三维光滑有界区域上非均匀不可压缩Navier-Stokes-Cahn-Hilliard系统,该系统描述了非均匀不可压缩两相粘性流的动力学。首先给出了初始密度远离零的初始边值问题局部强解的爆破判据。利用朗道势先验地建立了一些关键后,在初始基准‖∇μ0‖L2(Ω)+‖∇μ0‖L2(Ω)+‖ρ0‖L∞(Ω)适当小的条件下,得到了强解的整体存在性和时间衰减性。准确地说,我们通过详细的先验估计对Navier-Stokes-Cahn-Hilliard系统进行了系统的分析,包括爆破准则、强解的整体存在性和衰减行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness of the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system with Landau Potential
We study the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system in a bounded smooth domain in R3, which describes the dynamics of nonhomogeneous incompressible two-phase viscous flows. We first give a blow-up criterion of local strong solution to the initial-boundary-value problem for the case of initial density away from zero. After establishing some key a priori with the help of the Landau Potential, we obtain the global existence and the decay-in-time of strong solution, provided that the initial datum u0L2(Ω)+μ0L2(Ω)+ρ0L(Ω) is suitably small. Precisely, we provide a systematic analysis of the Navier-Stokes-Cahn-Hilliard system through detailed a priori estimates, covering blow-up criterion, global existence and decay behavior of strong solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信