可服从群动作的相对序列熵

IF 2.4 2区 数学 Q1 MATHEMATICS
Chunlin Liu , Changlin Wang , Weisheng Wu
{"title":"可服从群动作的相对序列熵","authors":"Chunlin Liu ,&nbsp;Changlin Wang ,&nbsp;Weisheng Wu","doi":"10.1016/j.jde.2025.113582","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the concept of relative sequence entropy for amenable group actions and explore the interplay between relative sequence entropy and Kronecker algebras for amenable group actions, and rigid algebras for abelian group actions. Our investigation extends to the application of relative sequence entropy in various mixing concepts within both measure-theoretic and topological systems. Additionally, we refine the notion of relative sequence entropy by introducing the concept of relative sequence entropy pairs for amenable group actions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"445 ","pages":"Article 113582"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative sequence entropy for amenable group actions\",\"authors\":\"Chunlin Liu ,&nbsp;Changlin Wang ,&nbsp;Weisheng Wu\",\"doi\":\"10.1016/j.jde.2025.113582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce the concept of relative sequence entropy for amenable group actions and explore the interplay between relative sequence entropy and Kronecker algebras for amenable group actions, and rigid algebras for abelian group actions. Our investigation extends to the application of relative sequence entropy in various mixing concepts within both measure-theoretic and topological systems. Additionally, we refine the notion of relative sequence entropy by introducing the concept of relative sequence entropy pairs for amenable group actions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"445 \",\"pages\":\"Article 113582\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006096\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006096","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

引入了可服从群作用的相对序列熵的概念,探讨了可服从群作用的相对序列熵与Kronecker代数和阿贝尔群作用的刚性代数的相互作用。我们的研究扩展到相对序列熵在测量理论和拓扑系统中各种混合概念中的应用。此外,我们通过引入可服从群行为的相对序列熵对的概念,改进了相对序列熵的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative sequence entropy for amenable group actions
We introduce the concept of relative sequence entropy for amenable group actions and explore the interplay between relative sequence entropy and Kronecker algebras for amenable group actions, and rigid algebras for abelian group actions. Our investigation extends to the application of relative sequence entropy in various mixing concepts within both measure-theoretic and topological systems. Additionally, we refine the notion of relative sequence entropy by introducing the concept of relative sequence entropy pairs for amenable group actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信