On the critical behavior for the semilinear biharmonic heat equation with forcing term in exterior domain

IF 2.3 2区 数学 Q1 MATHEMATICS
Nurdaulet N. Tobakhanov , Berikbol T. Torebek
{"title":"On the critical behavior for the semilinear biharmonic heat equation with forcing term in exterior domain","authors":"Nurdaulet N. Tobakhanov ,&nbsp;Berikbol T. Torebek","doi":"10.1016/j.jde.2025.113758","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the critical behavior of solutions to the semilinear biharmonic heat equation with forcing term <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, under six homogeneous boundary conditions. This paper is the first since the seminal work by Bandle et al. (2000) <span><span>[24]</span></span>, to focus on the study of critical exponents in exterior problems for semilinear parabolic equations with a forcing term. By employing a method of test functions and comparison principle, we derive the critical exponents <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>C</mi><mi>r</mi><mi>i</mi><mi>t</mi></mrow></msub></math></span> in the sense of Fujita. Moreover, we show that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>C</mi><mi>r</mi><mi>i</mi><mi>t</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> if <span><math><mi>N</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>C</mi><mi>r</mi><mi>i</mi><mi>t</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>4</mn></mrow></mfrac></math></span> if <span><math><mi>N</mi><mo>⩾</mo><mn>5</mn></math></span>. The impact of the forcing term on the critical behavior of the problem is also of interest, and thus a second critical exponent in the sense of Lee-Ni, depending on the forcing term is introduced. We also discuss the case <span><math><mi>f</mi><mo>≡</mo><mn>0</mn></math></span>, and present the finite-time blow-up results and lifespan estimates of solutions for the subcritical and critical cases. The lifespan estimates of solutions are obtained by employing the method proposed by Ikeda and Sobajama (2019) <span><span>[13]</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113758"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007855","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the critical behavior of solutions to the semilinear biharmonic heat equation with forcing term f(x), under six homogeneous boundary conditions. This paper is the first since the seminal work by Bandle et al. (2000) [24], to focus on the study of critical exponents in exterior problems for semilinear parabolic equations with a forcing term. By employing a method of test functions and comparison principle, we derive the critical exponents pCrit in the sense of Fujita. Moreover, we show that pCrit= if N=2,3,4 and pCrit=NN4 if N5. The impact of the forcing term on the critical behavior of the problem is also of interest, and thus a second critical exponent in the sense of Lee-Ni, depending on the forcing term is introduced. We also discuss the case f0, and present the finite-time blow-up results and lifespan estimates of solutions for the subcritical and critical cases. The lifespan estimates of solutions are obtained by employing the method proposed by Ikeda and Sobajama (2019) [13].
外域带强迫项的半线性双调和热方程的临界行为
本文研究了具有强迫项f(x)的半线性双调和热方程在六种齐次边界条件下解的临界行为。本文是自Bandle et al.(2000)[24]的开创性工作以来,首次集中研究带强迫项的半线性抛物型方程外部问题的临界指数。利用检验函数的方法和比较原理,导出了藤田意义下的临界指数pCrit。此外,我们表明,如果N=2,3,4, pCrit=∞,如果N大于或等于5,pCrit=NN−4。强迫项对问题的临界行为的影响也是令人感兴趣的,因此引入了依赖于强迫项的Lee-Ni意义上的第二个临界指数。我们也讨论了f≡0的情况,并给出了次临界和临界情况下解的有限时间爆破结果和寿命估计。解的寿命估计采用Ikeda和Sobajama(2019)[13]提出的方法获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信