Daniel R. Hawtin
{"title":"An explicit construction for large sets of infinite dimensional \u0000 \u0000 \u0000 q\u0000 \u0000 $q$\u0000 -Steiner systems","authors":"Daniel R. Hawtin","doi":"10.1002/jcd.21942","DOIUrl":"10.1002/jcd.21942","url":null,"abstract":"<p>Let <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation> $V$</annotation>\u0000 </semantics></math> be a vector space over the finite field <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{mathbb{F}}}_{q}$</annotation>\u0000 </semantics></math>. A <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 <annotation> $q$</annotation>\u0000 </semantics></math>-<i>Steiner system</i>, or an <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 \u0000 <msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>t</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>V</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> $S{(t,k,V)}_{q}$</annotation>\u0000 </semantics></math>, is a collection <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℬ</mi>\u0000 </mrow>\u0000 <annotation> ${rm{{mathcal B}}}$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-dimensional subspaces of <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation> $V$</annotation>\u0000 </semantics></math> such that every <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-dimensional subspace of <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation> $V$</annotation>\u0000 </semantics></math> is contained in a unique element of <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℬ</mi>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"413-418"},"PeriodicalIF":0.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0