R. Julian R. Abel, Thomas Britz, Yudhistira A. Bunjamin, Diana Combe
{"title":"Group divisible designs with block size 4 and group sizes 4 and 7","authors":"R. Julian R. Abel, Thomas Britz, Yudhistira A. Bunjamin, Diana Combe","doi":"10.1002/jcd.21932","DOIUrl":"https://doi.org/10.1002/jcd.21932","url":null,"abstract":"<p>In this paper, we consider the existence of group divisible designs (GDDs) with block size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math> and group sizes <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>7</mn>\u0000 </mrow>\u0000 <annotation> $7$</annotation>\u0000 </semantics></math>. We show that there exists a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math>-GDD of type <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mn>4</mn>\u0000 <mi>t</mi>\u0000 </msup>\u0000 <msup>\u0000 <mn>7</mn>\u0000 <mi>s</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${4}^{t}{7}^{s}$</annotation>\u0000 </semantics></math> for all but a finite specified set of feasible values for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(t,s)$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"328-346"},"PeriodicalIF":0.7,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21932","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140553167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huangsheng Yu, Jingyuan Chen, R. Julian R. Abel, Dianhua Wu
{"title":"The existence of \u0000 \u0000 \u0000 \u0000 2\u0000 3\u0000 \u0000 \u0000 ${2}^{3}$\u0000 -decomposable super-simple \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 v\u0000 ,\u0000 4\u0000 ,\u0000 6\u0000 \u0000 )\u0000 \u0000 \u0000 $(v,4,6)$\u0000 -BIBDs","authors":"Huangsheng Yu, Jingyuan Chen, R. Julian R. Abel, Dianhua Wu","doi":"10.1002/jcd.21935","DOIUrl":"10.1002/jcd.21935","url":null,"abstract":"<p>A design is said to be <i>super-simple</i> if the intersection of any two blocks has at most two elements. A design with index <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $tlambda $</annotation>\u0000 </semantics></math> is said to be <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>λ</mi>\u0000 <mi>t</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${lambda }^{t}$</annotation>\u0000 </semantics></math>-<i>decomposable</i>, if its blocks can be partitioned into nonempty collections <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{rm{ {mathcal B} }}}_{i}$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>≤</mo>\u0000 <mi>i</mi>\u0000 <mo>≤</mo>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $1le ile t$</annotation>\u0000 </semantics></math>, such that each <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{rm{ {mathcal B} }}}_{i}$</annotation>\u0000 </semantics></math> with the point set forms a design with index <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $lambda $</annotation>\u0000 </semantics></math>. In this paper, it is proved that there exists a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mn>3</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${2}^{3}$</annotation>\u0000 </semantics></math>-decomposable super-simple <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 <mo>,</mo>\u0000 <mn>4</mn>\u0000 <mo>,</mo>\u0000 <mn>6</mn>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(v,4,6)$</annotation>\u0000 </semantics></math>-BIBD (balanced incomplete block design) if and only if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 <mo>≥</mo>\u0000","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"297-307"},"PeriodicalIF":0.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}