Journal of Combinatorial Designs最新文献

筛选
英文 中文
An explicit construction for large sets of infinite dimensional q $q$ -Steiner systems 无穷维 q-Steiner 系统大集合的显式构造
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-04-15 DOI: 10.1002/jcd.21942
Daniel R. Hawtin
{"title":"An explicit construction for large sets of infinite dimensional \u0000 \u0000 \u0000 q\u0000 \u0000 $q$\u0000 -Steiner systems","authors":"Daniel R. Hawtin","doi":"10.1002/jcd.21942","DOIUrl":"10.1002/jcd.21942","url":null,"abstract":"<p>Let <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation> $V$</annotation>\u0000 </semantics></math> be a vector space over the finite field <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{mathbb{F}}}_{q}$</annotation>\u0000 </semantics></math>. A <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 <annotation> $q$</annotation>\u0000 </semantics></math>-<i>Steiner system</i>, or an <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 \u0000 <msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>t</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>V</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> $S{(t,k,V)}_{q}$</annotation>\u0000 </semantics></math>, is a collection <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℬ</mi>\u0000 </mrow>\u0000 <annotation> ${rm{{mathcal B}}}$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-dimensional subspaces of <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation> $V$</annotation>\u0000 </semantics></math> such that every <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-dimensional subspace of <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation> $V$</annotation>\u0000 </semantics></math> is contained in a unique element of <span></span><math>\u0000 \u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℬ</mi>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"413-418"},"PeriodicalIF":0.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genuinely nonabelian partial difference sets 真正非阿贝尔局部差集
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-03-30 DOI: 10.1002/jcd.21938
John Polhill, James A. Davis, Ken W. Smith, Eric Swartz
{"title":"Genuinely nonabelian partial difference sets","authors":"John Polhill,&nbsp;James A. Davis,&nbsp;Ken W. Smith,&nbsp;Eric Swartz","doi":"10.1002/jcd.21938","DOIUrl":"10.1002/jcd.21938","url":null,"abstract":"<p>Strongly regular graphs (SRGs) provide a fertile area of exploration in algebraic combinatorics, integrating techniques in graph theory, linear algebra, group theory, finite fields, finite geometry, and number theory. Of particular interest are those SRGs with a large automorphism group. If an automorphism group acts regularly (sharply transitively) on the vertices of the graph, then we may identify the graph with a subset of the group, a partial difference set (PDS), which allows us to apply techniques from group theory to examine the graph. Much of the work over the past four decades has concentrated on abelian PDSs using the powerful techniques of character theory. However, little work has been done on nonabelian PDSs. In this paper we point out the existence of <i>genuinely nonabelian</i> PDSs, that is, PDSs for parameter sets where a nonabelian group is the only possible regular automorphism group. We include methods for demonstrating that abelian PDSs are not possible for a particular set of parameters or for a particular SRG. Four infinite families of genuinely nonabelian PDSs are described, two of which—one arising from triangular graphs and one arising from Krein covers of complete graphs constructed by Godsil—are new. We also include a new nonabelian PDS found by computer search and present some possible future directions of research.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"351-370"},"PeriodicalIF":0.7,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21938","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doubly sequenceable groups 双序列群
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-03-30 DOI: 10.1002/jcd.21939
Mohammad Javaheri
{"title":"Doubly sequenceable groups","authors":"Mohammad Javaheri","doi":"10.1002/jcd.21939","DOIUrl":"10.1002/jcd.21939","url":null,"abstract":"&lt;p&gt;Given a sequence &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;…&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${bf{g}}:{g}_{0},{rm{ldots }},{g}_{m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in a finite group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${g}_{0}={1}_{G}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;…&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $bar{{bf{g}}}:{bar{g}}_{0},{rm{ldots }},{bar{g}}_{m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the sequence of consecutive quotients of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${bf{g}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; defined by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"371-387"},"PeriodicalIF":0.7,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group divisible designs with block size 4 and group sizes 4 and 7 组块大小为 4,组块大小为 4 和 7 的可分割设计
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-03-28 DOI: 10.1002/jcd.21932
R. Julian R. Abel, Thomas Britz, Yudhistira A. Bunjamin, Diana Combe
{"title":"Group divisible designs with block size 4 and group sizes 4 and 7","authors":"R. Julian R. Abel,&nbsp;Thomas Britz,&nbsp;Yudhistira A. Bunjamin,&nbsp;Diana Combe","doi":"10.1002/jcd.21932","DOIUrl":"https://doi.org/10.1002/jcd.21932","url":null,"abstract":"<p>In this paper, we consider the existence of group divisible designs (GDDs) with block size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math> and group sizes <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>7</mn>\u0000 </mrow>\u0000 <annotation> $7$</annotation>\u0000 </semantics></math>. We show that there exists a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math>-GDD of type <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mn>4</mn>\u0000 <mi>t</mi>\u0000 </msup>\u0000 <msup>\u0000 <mn>7</mn>\u0000 <mi>s</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${4}^{t}{7}^{s}$</annotation>\u0000 </semantics></math> for all but a finite specified set of feasible values for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(t,s)$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"328-346"},"PeriodicalIF":0.7,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21932","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140553167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternating parity weak sequencing 交替奇偶校验弱排序
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-02-27 DOI: 10.1002/jcd.21936
Simone Costa, Stefano Della Fiore
{"title":"Alternating parity weak sequencing","authors":"Simone Costa,&nbsp;Stefano Della Fiore","doi":"10.1002/jcd.21936","DOIUrl":"10.1002/jcd.21936","url":null,"abstract":"&lt;p&gt;A subset &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $S$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of a group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(G,+)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-&lt;i&gt;weakly sequenceable&lt;/i&gt; if there is an ordering &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;…&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $({y}_{1},{rm{ldots }},{y}_{k})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of its elements such that the partial sums &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;…&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${s}_{0},{s}_{1},{rm{ldots }},{s}_{k}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, given by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${s}_{0}=0$&lt;/annotation&gt;\u0000 &lt;/","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"308-327"},"PeriodicalIF":0.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139978158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The existence of 2 3 ${2}^{3}$ -decomposable super-simple ( v , 4 , 6 ) $(v,4,6)$ -BIBDs 存在23个可分解的超简单(v,4,6)$(v,4,6)$-BIBDs
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-02-22 DOI: 10.1002/jcd.21935
Huangsheng Yu, Jingyuan Chen, R. Julian R. Abel, Dianhua Wu
{"title":"The existence of \u0000 \u0000 \u0000 \u0000 2\u0000 3\u0000 \u0000 \u0000 ${2}^{3}$\u0000 -decomposable super-simple \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 v\u0000 ,\u0000 4\u0000 ,\u0000 6\u0000 \u0000 )\u0000 \u0000 \u0000 $(v,4,6)$\u0000 -BIBDs","authors":"Huangsheng Yu,&nbsp;Jingyuan Chen,&nbsp;R. Julian R. Abel,&nbsp;Dianhua Wu","doi":"10.1002/jcd.21935","DOIUrl":"10.1002/jcd.21935","url":null,"abstract":"&lt;p&gt;A design is said to be &lt;i&gt;super-simple&lt;/i&gt; if the intersection of any two blocks has at most two elements. A design with index &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $tlambda $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is said to be &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${lambda }^{t}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-&lt;i&gt;decomposable&lt;/i&gt;, if its blocks can be partitioned into nonempty collections &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{rm{ {mathcal B} }}}_{i}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $1le ile t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, such that each &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{rm{ {mathcal B} }}}_{i}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with the point set forms a design with index &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $lambda $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In this paper, it is proved that there exists a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${2}^{3}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-decomposable super-simple &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;6&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(v,4,6)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-BIBD (balanced incomplete block design) if and only if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"297-307"},"PeriodicalIF":0.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partition of ordered triples into uniform holey ordered designs 将有序三元组划分为均匀有序的洞穴设计
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-02-19 DOI: 10.1002/jcd.21933
Yuli Tan, Junling Zhou
{"title":"Partition of ordered triples into uniform holey ordered designs","authors":"Yuli Tan,&nbsp;Junling Zhou","doi":"10.1002/jcd.21933","DOIUrl":"10.1002/jcd.21933","url":null,"abstract":"&lt;p&gt;A large set &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;LOD&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $text{LOD}(v)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a partition of all ordered triples of a &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $v$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-set into &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $v-2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; disjoint ordered designs of order &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $v$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In this paper, we generalize the large set &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;LOD&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $text{LOD}(v)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $v=gt$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to the notion of &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;POT&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $text{POT}({g}^{t})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, representing a partition of all ordered triples of a &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $gt$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-set into disjoint uniform holely ordered designs &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;HOD&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $text{HOD}({g}^{t})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;s. We show that a &lt;math&gt;\u0000 &lt;semantics","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 5","pages":"274-293"},"PeriodicalIF":0.7,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric dual and sum-rank minimal codes 几何对偶码与和秩最小码
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-02-14 DOI: 10.1002/jcd.21934
Martino Borello, Ferdinando Zullo
{"title":"Geometric dual and sum-rank minimal codes","authors":"Martino Borello,&nbsp;Ferdinando Zullo","doi":"10.1002/jcd.21934","DOIUrl":"10.1002/jcd.21934","url":null,"abstract":"<p>The main purpose of this paper is to further study the structure, parameters and constructions of the recently introduced minimal codes in the sum-rank metric. These objects form a bridge between the classical minimal codes in the Hamming metric, the subject of intense research over the past three decades partly because of their cryptographic properties, and the more recent rank-metric minimal codes. We prove some bounds on their parameters, existence results, and, via a tool that we name geometric dual, we manage to construct minimal codes with few weights. A generalization of the celebrated Ashikhmin–Barg condition is proved and used to ensure the minimality of certain constructions.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 5","pages":"238-273"},"PeriodicalIF":0.7,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139778619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing MRD codes by switching 通过切换构建 MRD 代码
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-02-08 DOI: 10.1002/jcd.21931
Minjia Shi, Denis S. Krotov, Ferruh Özbudak
{"title":"Constructing MRD codes by switching","authors":"Minjia Shi,&nbsp;Denis S. Krotov,&nbsp;Ferruh Özbudak","doi":"10.1002/jcd.21931","DOIUrl":"10.1002/jcd.21931","url":null,"abstract":"<p>Maximum rank-distance (MRD) codes are (not necessarily linear) maximum codes in the rank-distance metric space on <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math>-by-<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> matrices over a finite field <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{mathbb{F}}}_{q}$</annotation>\u0000 </semantics></math>. They are diameter perfect and have the cardinality <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>q</mi>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mi>d</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${q}^{m(n-d+1)}$</annotation>\u0000 </semantics></math> if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>≥</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $mge n$</annotation>\u0000 </semantics></math>. We define switching in MRD codes as the replacement of special MRD subcodes by other subcodes with the same parameters. We consider constructions of MRD codes admitting switching, such as punctured twisted Gabidulin codes and direct-product codes. Using switching, we construct a huge class of MRD codes whose cardinality grows doubly exponentially in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math> if the other parameters (<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 <annotation> $n,,q$</annotation>\u0000 </semantics></math>, the code distance) are fixed. Moreover, we construct MRD codes with different affine ranks and aperiodic MRD codes.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 5","pages":"219-237"},"PeriodicalIF":0.7,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New constructions for disjoint partial difference families and external partial difference families 不相交部分差分族和外部部分差分族的新构造
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-02-04 DOI: 10.1002/jcd.21930
Sophie Huczynska, Laura Johnson
{"title":"New constructions for disjoint partial difference families and external partial difference families","authors":"Sophie Huczynska,&nbsp;Laura Johnson","doi":"10.1002/jcd.21930","DOIUrl":"https://doi.org/10.1002/jcd.21930","url":null,"abstract":"<p>Recently, new combinatorial structures called disjoint partial difference families (DPDFs) and external partial difference families (EPDFs) were introduced, which simultaneously generalize partial difference sets, disjoint difference families and external difference families, and have applications in information security. So far, all known construction methods have used cyclotomy in finite fields. We present the first noncyclotomic infinite families of DPDFs which are also EPDFs, in structures other than finite fields (in particular cyclic groups and nonabelian groups). As well as direct constructions, we present an approach to constructing DPDFs/EPDFs using relative difference sets (RDSs); as part of this, we demonstrate how the well-known RDS result of Bose extends to a very natural construction for DPDFs and EPDFs.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 4","pages":"190-213"},"PeriodicalIF":0.7,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21930","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139727696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信