Yeow Meng Chee, Son Hoang Dau, Tuvi Etzion, Han Mao Kiah, Wenqin Zhang
{"title":"Pairs in Nested Steiner Quadruple Systems","authors":"Yeow Meng Chee, Son Hoang Dau, Tuvi Etzion, Han Mao Kiah, Wenqin Zhang","doi":"10.1002/jcd.21973","DOIUrl":"https://doi.org/10.1002/jcd.21973","url":null,"abstract":"<div>\u0000 \u0000 <p>Motivated by a repair problem for fractional repetition codes in distributed storage, each block of any Steiner quadruple system (SQS) of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is partitioned into two pairs. Each pair in such a partition is called a nested design pair, and its multiplicity is the number of times it is a pair in this partition. Such a partition of each block is considered a new block design called a nested SQS. Several related questions on this type of design are considered in this paper: What is the maximum multiplicity of the nested design pair with minimum multiplicity? What is the minimum multiplicity of the nested design pair with maximum multiplicity? Are there nested quadruple systems in which all the nested design pairs have the same multiplicity? Of special interest are nested quadruple systems in which all the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mfenced>\u0000 <mfrac>\u0000 <mi>v</mi>\u0000 \u0000 <mn>2</mn>\u0000 </mfrac>\u0000 </mfenced>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> pairs are nested design pairs with the same multiplicity. Several constructions of nested quadruple systems are considered, and in particular, classic constructions of SQS are examined.</p>\u0000 </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 5","pages":"177-187"},"PeriodicalIF":0.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On MSRD Codes, h-Designs and Disjoint Maximum Scattered Linear Sets","authors":"Paolo Santonastaso, John Sheekey","doi":"10.1002/jcd.21972","DOIUrl":"https://doi.org/10.1002/jcd.21972","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, we construct new optimal subspace designs and, consequently, new optimal codes in the sum-rank metric. We construct new 1-designs by finding sets of disjoint maximum scattered linear sets, and use these constructions to also find new <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>h</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-designs for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>h</mi>\u0000 <mo>></mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. As a means of achieving this, we establish a correspondence between the metric properties of sum-rank metric codes and the geometric properties of subspace designs. Specifically, we determine the geometric counterpart of the coding-theoretic notion of generalised weights for the sum-rank metric in terms of subspace designs and determine a geometric characterisation of MSRD codes. This enables us to characterise subspace designs via their intersections with hyperplanes and via duality operations.</p>\u0000 </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 4","pages":"137-155"},"PeriodicalIF":0.5,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bent Functions on Finite Nonabelian Groups and Relative Difference Sets","authors":"Bangteng Xu","doi":"10.1002/jcd.21970","DOIUrl":"https://doi.org/10.1002/jcd.21970","url":null,"abstract":"<div>\u0000 \u0000 <p>It is well known that the perfect nonlinearity of a function between finite groups <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> can be characterized by its graph in terms of relative difference set in the direct product <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <mi>H</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> (cf. [4]). Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be the infinite set of complex roots of unity. A <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-valued function <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> on an arbitrary finite group <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is associated with a finite cyclic subgroup <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <msub>\u0000 <mi>T</mi>\u0000 \u0000 <mi>f</mi>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in the multiplicative group of nonzero complex numbers. For a bent function <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in general, its graph is not a relative difference set in the direct product <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 4","pages":"125-136"},"PeriodicalIF":0.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extensions of Steiner Triple Systems","authors":"Giovanni Falcone, Agota Figula, Mario Galici","doi":"10.1002/jcd.21964","DOIUrl":"https://doi.org/10.1002/jcd.21964","url":null,"abstract":"<p>In this article, we study extensions of Steiner triple systems by means of the associated Steiner loops. We recognize that the set of Veblen points of a Steiner triple system corresponds to the center of the Steiner loop. We investigate extensions of Steiner loops, focusing in particular on the case of Schreier extensions, which provide a powerful method for constructing Steiner triple systems containing Veblen points.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 3","pages":"94-108"},"PeriodicalIF":0.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21964","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Quasi-Hermitian Varieties in Even Characteristic and Related Orthogonal Arrays","authors":"Angela Aguglia, Luca Giuzzi, Alessandro Montinaro, Viola Siconolfi","doi":"10.1002/jcd.21966","DOIUrl":"https://doi.org/10.1002/jcd.21966","url":null,"abstract":"<p>In this article, we study the BM quasi-Hermitian varieties, laying in the three-dimensional Desarguesian projective space of even order. After a brief investigation of their combinatorial properties, we first show that all of these varieties are projectively equivalent, exhibiting a behavior which is strikingly different from what happens in odd characteristic. This completes the classification project started there. Here we prove more; indeed, by using previous results, we explicitly determine the structure of the full collineation group stabilizing these varieties. Finally, as a byproduct of our investigation, we also construct a family of simple orthogonal arrays <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>O</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>q</mi>\u0000 \u0000 <mn>5</mn>\u0000 </msup>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msup>\u0000 <mi>q</mi>\u0000 \u0000 <mn>4</mn>\u0000 </msup>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>q</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, with entries in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is an even prime power. Orthogonal arrays (OA's) are principally used to minimize the number of experiments needed to investigate how variables in testing interact with each other.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 3","pages":"109-122"},"PeriodicalIF":0.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21966","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Avoiding Secants of Given Size in Finite Projective Planes","authors":"Tamás Héger, Zoltán Lóránt Nagy","doi":"10.1002/jcd.21968","DOIUrl":"https://doi.org/10.1002/jcd.21968","url":null,"abstract":"<div>\u0000 \u0000 <p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be a prime power and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be a natural number. What are the possible cardinalities of point sets <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in a projective plane of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, which do not intersect any line at exactly <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> points? This problem and its variants have been investigated before, in relation with blocking sets, untouchable sets or sets of even type, among others. In this article, we show a series of results which point out the existence of all or almost all possible values <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>m</mi>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <mrow>\u0000 <mo>[</mo>\u0000 \u0000 <mrow>\u0000 <mn>0</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msup>\u0000 <mi>q</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msup>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mi>q</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>]</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>S</mi>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>=<","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 3","pages":"83-93"},"PeriodicalIF":0.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}