Anthony Bonato, Caleb Jones, Trent G. Marbach, Teddy Mishura
{"title":"How to Burn a Latin Square","authors":"Anthony Bonato, Caleb Jones, Trent G. Marbach, Teddy Mishura","doi":"10.1002/jcd.21988","DOIUrl":"https://doi.org/10.1002/jcd.21988","url":null,"abstract":"<p>We investigate the lazy burning process for Latin squares by studying their associated hypergraphs. In lazy burning, a set of vertices in a hypergraph is initially burned, and that burning spreads to neighboring vertices over time via a specified propagation rule. The lazy burning number is the minimum number of initially burned vertices that eventually burns all vertices. The hypergraphs associated with Latin squares include the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-uniform hypergraph, whose vertices and hyperedges correspond to the entries and lines (i.e., sets of rows, columns, or symbols) of the Latin square, respectively, and the 3-uniform hypergraph, which has vertices corresponding to the lines of the Latin square and hyperedges induced by its entries. Using sequences of vertices that together form a vertex cover, we show that for a Latin square of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, the lazy burning number of its <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-uniform hypergraph is bounded below by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>n</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msup>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and above by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>n</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msup>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>+</mo>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 8","pages":"300-309"},"PeriodicalIF":0.5,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21988","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constructions of Optimal Sparse \u0000 \u0000 \u0000 \u0000 r\u0000 \u0000 \u0000 -Disjunct Matrices via Packings","authors":"Liying Yu, Xin Wang, Lijun Ji","doi":"10.1002/jcd.21986","DOIUrl":"https://doi.org/10.1002/jcd.21986","url":null,"abstract":"<div>\u0000 \u0000 <p>Group testing has been widely used in various aspects, and the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-disjunct matrix plays a crucial role in group testing. The original purpose of the group testing is to identify a set of at most <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> positive items from a batch of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> total items using as fewer tests as possible. In many practical applications, each test can include only a limited number of items and each item can participate in a limited number of tests. In this paper, we use the tools from combinatorial design theory to construct optimal 2-disjunct matrices with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> rows and limited row weight <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>3</mn>\u0000 \u0000 <mo><</mo>\u0000 \u0000 <mi>ρ</mi>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mrow>\u0000 <mo>⌊</mo>\u0000 \u0000 <mfrac>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mn>2</mn>\u0000 </mfrac>\u0000 \u0000 <mo>⌋</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and optimal 3-disjunct matrices with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> rows and limited row weight <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>4</mn>\u0000 \u0000 <mo><</mo>\u0000 \u0000 <mi>ρ</mi>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 8","pages":"287-299"},"PeriodicalIF":0.5,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144256485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}