Journal of Combinatorial Designs最新文献

筛选
英文 中文
Maximum Shattering 最大破碎
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-08-29 DOI: 10.1002/jcd.22005
Noga Alon, Varun Sivashankar, Daniel G. Zhu
{"title":"Maximum Shattering","authors":"Noga Alon, Varun Sivashankar, Daniel G. Zhu","doi":"10.1002/jcd.22005","DOIUrl":"https://doi.org/10.1002/jcd.22005","url":null,"abstract":"<p>A family <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>ℱ</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> of subsets of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>]</mo>\u0000 </mrow>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mo>…</mo>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>n</mi>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> shatters a set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>A</mi>\u0000 \u0000 <mo>⊆</mo>\u0000 \u0000 <mrow>\u0000 <mo>[</mo>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>]</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> if for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>A</mi>\u0000 \u0000 <mo>′</mo>\u0000 </msup>\u0000 \u0000 <mo>⊆</mo>\u0000 \u0000 <mi>A</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, there is an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>F</mi>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <mi>ℱ</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semant","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 12","pages":"456-470"},"PeriodicalIF":0.8,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Completing Partial k -Star Designs 完成部分k星设计
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-08-17 DOI: 10.1002/jcd.22003
Ajani De Vas Gunasekara, Daniel Horsley
{"title":"Completing Partial \u0000 \u0000 \u0000 \u0000 k\u0000 \u0000 \u0000 -Star Designs","authors":"Ajani De Vas Gunasekara, Daniel Horsley","doi":"10.1002/jcd.22003","DOIUrl":"https://doi.org/10.1002/jcd.22003","url":null,"abstract":"<p>A <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math><i>-star</i> is a complete bipartite graph <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mrow>\u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. A <i>partial</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math><i>-star design of order</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a pair <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>A</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a set of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> vertices and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>A</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a set of edge-disjoint <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 12","pages":"446-455"},"PeriodicalIF":0.8,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tightness of the Weight-Distribution Bound for Strongly Regular Polar Graphs 强正则极图权分布界的紧性
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-08-04 DOI: 10.1002/jcd.22001
Rhys J. Evans, Sergey Goryainov, Leonid Shalaginov
{"title":"Tightness of the Weight-Distribution Bound for Strongly Regular Polar Graphs","authors":"Rhys J. Evans,&nbsp;Sergey Goryainov,&nbsp;Leonid Shalaginov","doi":"10.1002/jcd.22001","DOIUrl":"https://doi.org/10.1002/jcd.22001","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, we show the tightness of the weight-distribution bound for the positive nonprincipal eigenvalue of strongly regular (affine) polar graphs and characterise the optimal eigenfunctions. Additionally, we show the tightness of the weight-distribution bound for the negative nonprincipal eigenvalue of some unitary polar graphs.</p>\u0000 </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 12","pages":"435-445"},"PeriodicalIF":0.8,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145271842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On 3-Designs From P G L ( 2 , q ) 关于P - G - L (2, q)的3-设计
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-07-28 DOI: 10.1002/jcd.22000
Paul Tricot
{"title":"On 3-Designs From \u0000 \u0000 \u0000 \u0000 P\u0000 G\u0000 L\u0000 \u0000 (\u0000 \u0000 2\u0000 ,\u0000 q\u0000 \u0000 )","authors":"Paul Tricot","doi":"10.1002/jcd.22000","DOIUrl":"https://doi.org/10.1002/jcd.22000","url":null,"abstract":"<p>The group <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mi>L</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> acts 3-transitively on the projective line <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mi>F</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>q</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∪</mo>\u0000 \u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mi>∞</mi>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. Thus, an orbit of its action on the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-subsets of the projective line is the block set of a 3-<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>λ</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 11","pages":"428-432"},"PeriodicalIF":0.8,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commuting Pairs in Quasigroups 准群中的交换对
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-07-06 DOI: 10.1002/jcd.21994
Jack Allsop, Ian M. Wanless
{"title":"Commuting Pairs in Quasigroups","authors":"Jack Allsop,&nbsp;Ian M. Wanless","doi":"10.1002/jcd.21994","DOIUrl":"https://doi.org/10.1002/jcd.21994","url":null,"abstract":"<p>A quasigroup is a pair <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>Q</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mo>∗</mo>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a nonempty set and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∗</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is a binary operation on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>Q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> such that for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>a</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>b</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <msup>\u0000 <mi>Q</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, there exists a unique <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>x</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>y</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 11","pages":"418-427"},"PeriodicalIF":0.8,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21994","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Construction for Regular-Graph Designs 正则图设计的一个构造
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-07-03 DOI: 10.1002/jcd.21997
A. D. Forbes, C. G. Rutherford
{"title":"A Construction for Regular-Graph Designs","authors":"A. D. Forbes,&nbsp;C. G. Rutherford","doi":"10.1002/jcd.21997","DOIUrl":"https://doi.org/10.1002/jcd.21997","url":null,"abstract":"<div>\u0000 \u0000 <p>A regular-graph design is a block design for which a pair <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mi>a</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>b</mi>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> of distinct points occurs in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>λ</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> or <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> blocks depending on whether <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 \u0000 <mrow>\u0000 <mi>a</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>b</mi>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is or is not an edge of a given <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>δ</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-regular graph. Our paper describes a specific construction for regular-graph designs with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>λ</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> and block size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>δ</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>. We show that for <span></span><math>\u0000 <semantics>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 11","pages":"409-417"},"PeriodicalIF":0.8,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric 2- ( 35 , 17 , 8 ) Designs With an Automorphism of Order 2 具有2阶自同构的对称2-(35,17,8)设计
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-07-01 DOI: 10.1002/jcd.21998
Sanja Rukavina, Vladimir D. Tonchev
{"title":"Symmetric 2-\u0000 \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 35\u0000 ,\u0000 17\u0000 ,\u0000 8\u0000 \u0000 )\u0000 \u0000 \u0000 \u0000 Designs With an Automorphism of Order 2","authors":"Sanja Rukavina,&nbsp;Vladimir D. Tonchev","doi":"10.1002/jcd.21998","DOIUrl":"https://doi.org/10.1002/jcd.21998","url":null,"abstract":"&lt;p&gt;The largest prime &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that can be the order of an automorphism of a 2-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;35&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;17&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; design is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;17&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and all 2-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;35&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;17&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; designs with an automorphism of order 17 were classified by Tonchev. The symmetric 2-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;35&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;17&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 10","pages":"399-403"},"PeriodicalIF":0.8,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21998","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144811225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enumeration of E ( s 2 ) -Optimal and Minimax-Optimal Supersaturated Designs With 12 Rows, 11 q Columns and s max = 4 12行E (s2) -最优和最小-最优过饱和设计的枚举11q列,s max = 4
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-06-30 DOI: 10.1002/jcd.21993
Luis B. Morales
{"title":"Enumeration of \u0000 \u0000 \u0000 \u0000 \u0000 E\u0000 \u0000 (\u0000 \u0000 s\u0000 2\u0000 \u0000 )\u0000 \u0000 \u0000 \u0000 -Optimal and Minimax-Optimal Supersaturated Designs With 12 Rows, \u0000 \u0000 \u0000 \u0000 11\u0000 q\u0000 \u0000 \u0000 Columns and \u0000 \u0000 \u0000 \u0000 \u0000 s\u0000 max\u0000 \u0000 =\u0000 4","authors":"Luis B. Morales","doi":"10.1002/jcd.21993","DOIUrl":"https://doi.org/10.1002/jcd.21993","url":null,"abstract":"<p>The <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mspace></mspace>\u0000 \u0000 <mi>E</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <msup>\u0000 <mi>s</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msup>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>-optimal and minimax-optimal supersaturated designs (SSDs) with 12 rows, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>11</mn>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> columns, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>s</mi>\u0000 \u0000 <mi>max</mi>\u0000 </msub>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> are enumerated in a computer search: there are, respectively, 34, 146, 0, 3, and 1 such designs for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>2</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>5</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, and 6. Cheng and Tang proved that for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mo>&gt;</mo>\u0000 \u0000 <mn>6</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, there are no such SSDs. This completes the enumeration of all SSDs with the described restrictions. These results are obtained by enumerating the ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 10","pages":"379-387"},"PeriodicalIF":0.8,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144809298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of Minimal Blocking Sets in PG ( 2 , 11 ) With a Nontrivial Automorphism Group 具有非平凡自同构群的PG(2,11)极小块集的分类
IF 0.8 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-06-30 DOI: 10.1002/jcd.21995
A. Botteldoorn, K. Coolsaet, V. Fack
{"title":"Classification of Minimal Blocking Sets in \u0000 \u0000 \u0000 \u0000 PG\u0000 \u0000 (\u0000 \u0000 2\u0000 ,\u0000 11\u0000 \u0000 )\u0000 \u0000 \u0000 \u0000 With a Nontrivial Automorphism Group","authors":"A. Botteldoorn,&nbsp;K. Coolsaet,&nbsp;V. Fack","doi":"10.1002/jcd.21995","DOIUrl":"https://doi.org/10.1002/jcd.21995","url":null,"abstract":"<div>\u0000 \u0000 <p>We obtain, by computer, a full classification up to equivalence of all minimal blocking sets with a nontrivial automorphism group in the Desarguesian projective plane of order 11. We list the resulting numbers of sets according to their size and the order of their automorphism group. For the minimal blocking sets with the larger automorphism groups, explicit descriptions are given. We also give a list of all blocking semiovals among the results. In contrast to similar work on the planes of smaller order, only those blocking sets were generated that have an automorphism group of size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>&gt;</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, as the number of minimal blocking sets with a trivial group is estimated to be infeasibly large. New algorithms had to be devised to obtain these results because simply generating all sets and filtering out those with a nontrivial automorphism group was totally impractical.</p>\u0000 </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 10","pages":"388-398"},"PeriodicalIF":0.8,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144809272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enumeration and Construction of Row-Column Designs 行-列设计的枚举和构造
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2025-06-16 DOI: 10.1002/jcd.21991
Gerold Jäger, Klas Markström, Denys Shcherbak, Lars-Daniel Öhman
{"title":"Enumeration and Construction of Row-Column Designs","authors":"Gerold Jäger,&nbsp;Klas Markström,&nbsp;Denys Shcherbak,&nbsp;Lars-Daniel Öhman","doi":"10.1002/jcd.21991","DOIUrl":"https://doi.org/10.1002/jcd.21991","url":null,"abstract":"<p>We computationally completely enumerate a number of types of row-column designs up to isotopism, including double, sesqui, and triple arrays as known from the literature, and two newly introduced types that we call mono arrays and AO-arrays. We calculate autotopism group sizes for the designs we generate. For larger parameter values, where complete enumeration is not feasible, we generate examples of some of the designs, and for some admissible parameter sets, we prove non-existence results. We give some explicit constructions of sesqui arrays, mono arrays and AO-arrays, in particular, we prove constructively that AO-arrays exist for all feasible parameter sets. Finally, we investigate connections to Youden rectangles and binary pseudo-Youden designs.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 9","pages":"357-372"},"PeriodicalIF":0.5,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21991","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144624820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信