最大破碎

IF 0.8 4区 数学 Q3 MATHEMATICS
Noga Alon, Varun Sivashankar, Daniel G. Zhu
{"title":"最大破碎","authors":"Noga Alon,&nbsp;Varun Sivashankar,&nbsp;Daniel G. Zhu","doi":"10.1002/jcd.22005","DOIUrl":null,"url":null,"abstract":"<p>A family <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> of subsets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> shatters a set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>A</mi>\n \n <mo>⊆</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> if for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>A</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>⊆</mo>\n \n <mi>A</mi>\n </mrow>\n </mrow>\n </semantics></math>, there is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>∈</mo>\n \n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>∩</mo>\n \n <mi>A</mi>\n \n <mo>=</mo>\n \n <msup>\n <mi>A</mi>\n \n <mo>'</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>. We develop a framework to analyze <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, the maximum possible number of subsets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> that can be shattered by a family of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. Among other results, we determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> exactly for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> and show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> grow, with both <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> tending to infinity, then for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> satisfying <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mi>d</mi>\n </msup>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msup>\n <mn>2</mn>\n \n <mi>d</mi>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, we have <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>c</mi>\n \n <mfenced>\n <mfrac>\n <mi>n</mi>\n \n <mi>d</mi>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math>, roughly 0.289, is the probability that a large square matrix over <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is invertible. This latter result extends work of Das and Mészáros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 12","pages":"456-470"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22005","citationCount":"0","resultStr":"{\"title\":\"Maximum Shattering\",\"authors\":\"Noga Alon,&nbsp;Varun Sivashankar,&nbsp;Daniel G. Zhu\",\"doi\":\"10.1002/jcd.22005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A family <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of subsets of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n \\n <mi>n</mi>\\n \\n <mo>]</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> shatters a set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>A</mi>\\n \\n <mo>⊆</mo>\\n \\n <mrow>\\n <mo>[</mo>\\n \\n <mi>n</mi>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> if for every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>A</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>⊆</mo>\\n \\n <mi>A</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, there is an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n \\n <mo>∩</mo>\\n \\n <mi>A</mi>\\n \\n <mo>=</mo>\\n \\n <msup>\\n <mi>A</mi>\\n \\n <mo>'</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>. We develop a framework to analyze <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, the maximum possible number of subsets of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n \\n <mi>n</mi>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> that can be shattered by a family of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Among other results, we determine <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> exactly for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and show that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> grow, with both <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> tending to infinity, then for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> satisfying <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mi>d</mi>\\n </msup>\\n \\n <mo>≤</mo>\\n \\n <mi>k</mi>\\n \\n <mo>≤</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <msup>\\n <mn>2</mn>\\n \\n <mi>d</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>, we have <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>c</mi>\\n \\n <mfenced>\\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>d</mi>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, roughly 0.289, is the probability that a large square matrix over <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is invertible. This latter result extends work of Das and Mészáros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 12\",\"pages\":\"456-470\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.22005\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.22005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

[n] =的子集的一族_{1,2,…,n}粉碎一组a哉[n]如果对每个A ` `,存在一个F∈F∩A= a '。我们开发了一个框架来分析f (n, k)D);大小为d的[n]的子集的最大可能数目这可能会被一个k人的家庭所打破。 在其他结果中,我们确定f (n, k,D)正好满足D≤2的条件如果d和n增大,当d和n - d都趋于无穷时,对于任意满足2d≤k的k≤(1 + 0d);我们有f (n, k)D) = (1 + 0)(1) cN d,其中c大致为0。 289,是一个大的方阵在f2上可逆的概率。后一个结果扩展了Das和Mészáros的工作。作为一个应用,我们改进了覆盖数组在特定字母大小下存在的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maximum Shattering

Maximum Shattering

A family of subsets of [ n ] = { 1 , 2 , , n } shatters a set A [ n ] if for every A A , there is an F such that F A = A ' . We develop a framework to analyze f ( n , k , d ) , the maximum possible number of subsets of [ n ] of size d that can be shattered by a family of size k . Among other results, we determine f ( n , k , d ) exactly for d 2 and show that if d and n grow, with both d and n d tending to infinity, then for any k satisfying 2 d k ( 1 + o ( 1 ) ) 2 d , we have f ( n , k , d ) = ( 1 + o ( 1 ) ) c n d , where c , roughly 0.289, is the probability that a large square matrix over F 2 is invertible. This latter result extends work of Das and Mészáros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信