Noga Alon, Varun Sivashankar, Daniel G. Zhu
下载PDF
{"title":"最大破碎","authors":"Noga Alon, Varun Sivashankar, Daniel G. Zhu","doi":"10.1002/jcd.22005","DOIUrl":null,"url":null,"abstract":"<p>A family <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> of subsets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> shatters a set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>A</mi>\n \n <mo>⊆</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> if for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>A</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>⊆</mo>\n \n <mi>A</mi>\n </mrow>\n </mrow>\n </semantics></math>, there is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>∈</mo>\n \n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>∩</mo>\n \n <mi>A</mi>\n \n <mo>=</mo>\n \n <msup>\n <mi>A</mi>\n \n <mo>'</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>. We develop a framework to analyze <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, the maximum possible number of subsets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> that can be shattered by a family of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. Among other results, we determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> exactly for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> and show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> grow, with both <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> tending to infinity, then for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> satisfying <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mi>d</mi>\n </msup>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msup>\n <mn>2</mn>\n \n <mi>d</mi>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, we have <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>c</mi>\n \n <mfenced>\n <mfrac>\n <mi>n</mi>\n \n <mi>d</mi>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math>, roughly 0.289, is the probability that a large square matrix over <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is invertible. This latter result extends work of Das and Mészáros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 12","pages":"456-470"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22005","citationCount":"0","resultStr":"{\"title\":\"Maximum Shattering\",\"authors\":\"Noga Alon, Varun Sivashankar, Daniel G. Zhu\",\"doi\":\"10.1002/jcd.22005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A family <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of subsets of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n \\n <mi>n</mi>\\n \\n <mo>]</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> shatters a set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>A</mi>\\n \\n <mo>⊆</mo>\\n \\n <mrow>\\n <mo>[</mo>\\n \\n <mi>n</mi>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> if for every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>A</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>⊆</mo>\\n \\n <mi>A</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, there is an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>ℱ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n \\n <mo>∩</mo>\\n \\n <mi>A</mi>\\n \\n <mo>=</mo>\\n \\n <msup>\\n <mi>A</mi>\\n \\n <mo>'</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>. We develop a framework to analyze <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, the maximum possible number of subsets of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n \\n <mi>n</mi>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> that can be shattered by a family of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Among other results, we determine <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> exactly for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and show that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> grow, with both <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> tending to infinity, then for any <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> satisfying <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mi>d</mi>\\n </msup>\\n \\n <mo>≤</mo>\\n \\n <mi>k</mi>\\n \\n <mo>≤</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <msup>\\n <mn>2</mn>\\n \\n <mi>d</mi>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>, we have <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mi>o</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>1</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>c</mi>\\n \\n <mfenced>\\n <mfrac>\\n <mi>n</mi>\\n \\n <mi>d</mi>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, roughly 0.289, is the probability that a large square matrix over <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is invertible. This latter result extends work of Das and Mészáros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 12\",\"pages\":\"456-470\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.22005\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.22005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用